Struktur Komunitas Fitoplankton di Area Tambang Timah dan Perairan Sekitar Kabupaten Bangka Barat

Main Article Content

Arief Rachman



Tin mining in the coastal waters of West Bangka Regency is known to affect water quality, which has an impact on the phytoplankton community structure. This research aims to study phytoplankton communities in mining tin areas and outside of mining areas (non-mining areas). Sampling was carried out in 22 sampling stations with 7 stations in the tin mining area. Phytoplankton samples were taken by the vertical haul method. Zooplankton sampling and measurement of water parameters in the form of temperature, pH, and salinity were also conducted to determine the relationship of these parameters with the phytoplankton community. Based on the density of phytoplankton in the water column, the coastal waters of West Bangka are generally in the category of oligotrophic with cell densities ranging from 3.6 × 105 - 1.6 × 107 cells.m-3. The results of the IS-ID analysis showed a difference of 56% in phytoplankton community structures in the mining and non-mining areas of West Bangka coastal. Although no differences were found in the number of phytoplankton genus present, phytoplankton cell density in the waters around the tin mining area was found to be lower compared to the waters in the non-mining area. Differences in community structure and phytoplankton cell density in mining and non-mining areas are thought to be related to mining activities in the coastal. However, further studies are needed to study the magnitude of the influence and exact cause of the emergence of differences in community structure and phytoplankton density.

Keywords: Tin mining, spatial distribution, phytoplankton community, Bray-Curtis clustering



Penambangan timah di perairan pesisir Kabupaten Bangka Barat diketahui dapat mempengaruhi kualitas perairan sehingga berdampak pada struktur komunitas fitoplankton. Penelitian ini bertujuan untuk mempelajari komunitas fitoplankton di kawasan tambang timah pesisir (mining) dan di luar area tambang (non-mining) di pesisir Bangka Barat. Pengambilan sampel dilakukan pada bulan Oktober 2012 di 22 stasiun sampling, termasuk 7 stasiun sampling yang berada di area penambangan timah. Sampel fitoplankton diambil dengan metode vertical haul menggunakan jaring Kitahara (mata jaring 80 µm). Pengambilan sampel zooplankton dan pengukuran parameter air berupa suhu, pH, dan salinitas juga dilakukan untuk mengetahui hubungan parameter tersebut dengan komunitas fitoplankton di area kajian. Berdasarkan densitas fitoplankton di kolom air, perairan pesisir Bangka Barat secara umum berada dalam kategori oligotrofik dengan densitas sel berkisar antara 3,6×105 – 1,6×107 sel.m-3. Komunitas fitoplankton di Bangka Barat terdiri atas 28 genus, mencakup 23 genus Diatomae dan 5 genus Dinoflagellata, dengan Bacteriastrum, Chaetoceros, Thalassiothrix, Rhizosolenia, dan Pseudo-nitzschia sebagai genera paling dominan di perairan. Hasil analisis IS-ID menunjukkan perbedaan sebesar 56% pada struktur komunitas fitoplankton di area mining dan non-mining perairan Bangka Barat. Meskipun tidak ditemukan perbedaan pada jumlah genus fitoplankton yang hadir, densitas sel fitoplankton di perairan sekitar kawasan mining timah ditemukan lebih rendah dibandingkan dengan perairan yang ada di kawasan non-mining Kabupaten Bangka Barat. Perbedaan struktur komunitas dan densitas sel fitoplankton di area mining dan non-mining diduga terkait dengan aktivitas penambangan di perairan pesisir Bangka Barat. Namun diperlukan kajian lebih lanjut untuk mempelajari besar pengaruh dan penyebab pasti munculnya perbedaan struktur komunitas dan densitas fitoplankton tersebut. 

Kata kunci: Tambang timah, distribusi spasial, komunitas fitoplankton, Bray-Curtis clustering

Article Details

Author Biography

Arief Rachman, Plankton and Primary Productivity Laboratory, Research Center for Oceanography, Indonesian Institute of Science (RCO-LIPI)

Plankton and Primary Productivity Laboratory,

Research Center for Oceanography, Indonesian Institute of Sciences (RCO-LIPI)


Erman, E. (2008). Rethinking Legal and Illegal Economy: A Case Study of Tin Mining in Bangka Island. Southeast Asia: History and Culture, 2008(37), 91-111.

Hutahaean, B. P., & Yudoko, G. (2013). Analysis and Proposed Changes of TIN ORE Processing System on Cutter Suction Dredges Into Low Grade to Improve Added Value for the Company. Indonesian Journal of Business Administration, 2(16).

Syarbaini, S., Warsona, A., & Iskandar, D. (2014). Natural Radioactivity in Some Food Crops from Bangka-Belitung Islands, Indonesia. Atom Indonesia, 40(1), 27-32.

Charlier, R. (2002). Impact on the coastal environment of marine aggregates mining. International journal of environmental studies, 59(3), 297-322.

Prasetya, N. B. A., Aulia, W., Syahbana, A., & Kewe, E. (2010). Pemantauan kadar logam berat Pb, Cd, Cu, Zn dan Ni dalam air laut dan sedimen di Perairan Pulau Bangka. Dalam: R. Nuchsin (ed.). Perairan Provinsi Kepulauan Bangka Belitung sumber daya laut dan osenaografi. 136-151. LIPI Press, Jakarta.

Alldredge, A. L., Elias, M., & Gotschalkt, C. C. (1986). Effects of drilling muds and mud additives on the primary production of natural assemblages of marine phytoplankton. Marine environmental research, 19(2), 157-176.

Nayar, S. , Goh, B. P. L., & Chou, L. M. (2004). Environmental impact of heavy metals from dredged and resuspended sediments on phytoplankton and bacteria assessed in in situ mesocosms. Ecotoxicology and environmental safety, 59(3), 349-369.

Usup, G., & Azanza, V. (1998). Physiology and bloom dynamics of the Tropical dinoflagellate Pyrodinium bahamense. In G. Usup, V. Azanza, D. Anderson, A. Cembella, & G. Hallegraeff (Eds.), Physiological Ecology of Harmful Algal Blooms (pp. 81-92). Berlin: Springer-Verlag.

Kremp, A. (2001). Effects of cyst resuspension on germination and seeding of two bloom-forming dinoflagellates in the Baltic Sea. Marine Ecology Progress Series, 216, 57-66.

Oberholster, P. J., Myburgh, J. G., Ashton, P. J., & Botha, A.-M. (2010). Responses of phytoplankton upon exposure to a mixture of acid mine drainage and high levels of nutrient pollution in Lake Loskop, South Africa. Ecotoxicology and environmental safety, 73(3), 326-335.

Reynolds, C. S. (1997). Vegetation processes in the pelagic: a model for ecosystem theory. Oldendorf/Luhe: Ecology Institute.

Alves-de-Souza, C., González, M. T., & Iriarte, J. L. (2008). Functional groups in marine phytoplankton assemblages dominated by diatoms in fjords of southern Chile. Journal of Plankton Research, 30(11), 1233-1243.

Thoha, H. (2010). Kelimpahan plankton di perairan Bangka-Belitung dan Laut Cina Selatan, Sumatera, Mei-Juni 2002. Makara Journal of Science.

Putri, B., Retnoningtyas, H., Mujib, A., Firman, S., & Thoha, H. (2010). Kelimpahan dan sebaran plankton di perairan Pulau Bangka. In B. Putri, H. Retnoningtyas, A. Mujib, S. Firman, H. Thoha, Ruyitno, Sulistijo, Pramudji, M. Muchtar, T. Susana, & Fahmi (Eds.), Perairan provinsi Kepulauan Bangka Belitung: Sumber daya laut dan oseanografi (pp. 105-112). Jakarta: LIPI Press.

Davis, C. (1955). The marine and fresh-water plankton. Michigan State University Press; USA.

Shirota, A. (1966). The plankton of South Vietnam-fresh water and marine plankton. Japan: Over Tech Coop Agent.

Yamaji, I. (1966). Illustrations of the marine plankton of Japan. Hoikusha.

Wickstead, J. H. (1976). The Institute of Biology’s studies in biology no. 62: marine zooplankton. USA: Edward Arnold Publisher Ltd. USA.

Praseno, D. P., & Sugestiningsih. (2000). Retaid di perairan Indonesia. Jakarta: Pusat Penelitian dan Pengembangan Oseanologi-LIPI.

Cox, G. (1976). Laboratory manual of general ecology 3rd ed. Iowa: Wm C. Brown Company Pub.

Bakus, G. (2007). Quantitative analysis of Maine biological communities: Field biology and Environment. USA: John Wiley & Sons, Inc.

McAleece, N., Gage, J., Lambshead, J., & Peterson, G. (1997). Biodiversity Professional Statistical Analysis Software. London: The Natural History Museum & Scottish Association of Marine Science.

Spatharis, S., & Tsirtsis, G. (2010). Ecological quality scales based on phytoplankton for the implementation of Water Framework Directive in the Eastern Mediterranean. Ecological Indicators, 10(4), 840-847.

Hafsah, Gumbira, G., Taufik, N., & Muchtar, M. (2010). Dinamika konsentrasi nitrat, fosfat, derajat keasaman, dan oksigen terlarut di perairan Bangka. In Hafsah, G. Gumbira, N. Taufik, M. Muchtar, Ruyitno, Sulistijo, Pramudji, M. Muchtar, T. Susana, & Fahmi (Eds.), Perairan provinsi Kepulauan Bangka Belitung: Sumber Daya Laut dan Oseanografi (pp. 85-104). Jakarta: LIPI Press.

Lugomela, C., Wallberg, P., & Nielsen, T. G. (2001). Plankton composition and cycling of carbon during the rainy season in a tropical coastal ecosystem, Zanzibar, Tanzania. Journal of Plankton Research, 23(10), 1121-1136.

Malej, A., MozetiÄ, P., Turk, V., TerziÄ, S., Ahel, M., & Cauwet, G. (2003). Changes in particulate and dissolved organic matter in nutrient-enriched enclosures from an area influenced by mucilage: the northern Adriatic Sea. Journal of plankton research, 25(8), 949-966.

Nakane, T., Nakaka, K., Bouman, H., & Platt, T. (2008). Environmental control of short-term variation in the plankton community of inner Tokyo Bay, Japan. Estuarine, Coastal and Shelf Science, 78(4), 796-810.

Brunet, C., & Lizon, F. (2003). Tidal and diel periodicities of size-fractionated phytoplankton pigment signatures at an offshore station in the southeastern English Channel. Estuarine, Coastal and Shelf Science, 56(3-4), 833-843.

Gasiūnaitė, Z. R., Cardoso, A. C., Heiskanen, A.-S., Henriksen, P., Kauppila, P., Olenina, I., Pilkaitytė, R., Purina, I., Razinkovas, A. & Sagert, S. (2005). Seasonality of coastal phytoplankton in the Baltic Sea: influence of salinity and eutrophication. Estuarine, Coastal and Shelf Science, 65(1-2), 239-252.

Zhou, M. J., & Yu, R. C. (2007). Mechanisms and impacts of harmful algal blooms and the countmeasures. Chinese Journal of Nature, 29(2), 72-77.

Xu, N., Duan, S., Li, A., Zhang, C., Cai, Z., & Hu, Z. (2010). Effects of temperature, salinity and irradiance on the growth of the harmful dinoflagellate Prorocentrum donghaiense Lu. Harmful Algae, 9(1), 13-17.

Aßmus, J., Melle, W., Tjøstheim, D., & Edwards, M. (2009). Seasonal cycles and long-term trends of plankton in shelf and oceanic habitats of the Norwegian Sea in relation to environmental variables. Deep Sea Research Part II: Topical Studies in Oceanography, 56(21-22), 1895-1909.

Petersen, S., & Gustavson, K. (1998). Toxic effects of tri-butyl-tin (TBT) on autotrophic pico-, nano-, and microplankton assessed by a size fractionated pollution-induced community tolerance (SF-PICT) concept. Aquatic toxicology, 40(2-3), 253-264.

Hasle, G., & Syvertsen, E. (1997). Chapter 2: Marine diatoms. In G. Hasle, E. Syvertsen, & C. Tomas (Ed.), Identifying Marine Phytoplankton (pp. 5-385). USA: Academic Press.

Kim, E.-H., Mason, R., Porter, E., & Soulen, H. (2004). The effect of resuspension on the fate of total mercury and methyl mercury in a shallow estuarine ecosystem: a mesocosm study. Marine Chemistry, 86(3-4), 121-137.

Cabrita, M. T. (2014). Phytoplankton community indicators of changes associated with dredging in the Tagus estuary (Portugal). Environmental pollution, 191, 17-24.

Sankar, C. S. (2012). Species Composition, Abundance and Distribution of Phytoplankton in the Harbour Areas and Coastal Waters of Port Blair, South Andaman 1R. Siva Sankar and 2G. Padmavati. Int. J. Oceanogr. Marine Ecol. Sys, 1(3), 76-83.

Ellis, D. V. (2001). A review of some environmental issues affecting marine mining. Marine Georesources & Geotechnology, 19(1), 51-63.