Pengamatan Efek Pratritmen Tandan Kosong Sawit sebelum Proses Konversi Biogas dengan Analisis Mikroskopi

Main Article Content

Iin Parlina

Abstract

ABSTRACT

Conversion of lignocellulosic biomass such as Oil Palm-Empty Fruit Bunch (OP-EFB) into bioenergy is a promising solution to mitigate the impact of climate change and avoid an energy crisis that have been globally anticipated. The abundance amount of OP-EFB as a biomass waste from oil palm processing in Indonesia has opened more chance to produce bio-energy and other valuable products without having competition with the food sector. It has a high content of cellulose and hemicellulose that can be processed generating bio-energy such as biogas or bioethanol. However, to be processed into bio-energy, and other products, EFB should be pretreated first to break the recalcitrant characteristic and increase the yield and conversion rate. Alkaline pretreatment is widely known for its effectivity on lignin removal to open more access of the lignocellulose, especially for the Anaerobic Digestion (AD) process. There are several ways to evaluate Pratritmen performance before the AD process, for example by chemical analysis as well as visual observation using a microscope. Visual observation emphasizes the change in microstructure or morphology of the pretreatment process so that it can be a method for physically explaining what is happening at the microscopic level. This research’s objective is to perform microscopy observation on the OP-EFB component’s changes during the low concentrated alkaline pretreatment using NaOH 6% and mixture of NH4OH and (NH4)2CO3 10% as long as 24 hours. The result from using CLSM shows the process of delignification, while SEM shows 3 major visual changes i.e. silica bodies removal, surface degradation and the enhanced bacteria’s affinity to the OP-EFB’s surface.

Keywords: Microscopy analysis, Oil palm empty fruit bunch, alkaline pretreatment, Anaerobic Digestion, visual changes

 

ABSTRAK

Konversi biomasa lignoselulosa seperti Tandan Kosong Sawit (TKS) menjadi bioenergi adalah solusi yang menjanjikan untuk mengurangi dampak perubahan iklim dan menghindari krisis energi yang telah diantisipasi secara global. Jumlah kelimpahan TKS sebagai residu dari proses produksi minyak kelapa sawit telah membuka banyak peluang untuk menghasilkan bioenergi dan produk nilai lainnya tanpa bersaing dengan sektor pangan. TKS memiliki kandungan selulosa dan hemiselulosa tinggi yang dapat diproses menghasilkan bioenergi seperti biogas atau bioetanol. Namun, untuk diproses menjadi bio-energi, dan produk lainnya, substrat ini harus dipratritmen terlebih dahulu untuk mengatasi karakteristik rekalsitransi yang menjadi penghambat utama dalam proses biokonversi. Pratritmen dengan menggunakan reagent basa (alkalin) secara luas dikenal karena efektifitasnya pada penghilangan lignin untuk membuka lebih banyak akses lignoselulosa, terutama untuk proses produksi biogas (AD). Terdapat beberapa cara untuk mengevaluasi kinerja Pratritmen sebelum proses AD, misalnya dengan analisis kimia juga pengamatan visual dengan menggunakan mikroskop. Observasi visual menekankan adanya perubahan mikrostruktur atau morfologi dari proses pratritmen sehingga bisa menjadi metode untuk menjelaskan secara fisik apa yang terjadi dalam tataran mikroskopis. Tujuan dari penelitian adalah melakukan analisis mikroskopi dengan menggunakan confocal dan SEM pada TKS sebelum dan setelah dilakukan pratritmen dengan alkalin NaOH 6% dan campuran NH4OH dengan (NH4)2CO310% selama 24 jam juga TKS hasil pratritmen yang digunakan untuk proses produksi biogas. Hasil dari Confocal memperlihatkan adanya perubahan dari TKS sebelum dan setelah pretreatmen yaitu terjadinya proses delignifikasi, sementara hasil SEM memperlihatkan 3 perubahan visual utama yang dapat dianalisis yaitu penghilangan silika, degradasi permukaan dan peningkatan afinitas bakteri pada permukaan TKS yang dilakukan pratritmen.

Kata kunci : analisis mikroskopi, tandan kosong kelapa sawit, pratritmen alkalin, Anaerobic Digestion, perubahan visual

Article Details

Section
RESEARCH ARTICLES

References

Tan, K. T., Lee, K. T., Mohamed, A. R., & Bhatia, S. (2009). Palm oil: Addressing issues and towards sustainable development. Renewable and Sustainable Energy Reviews, 13(2), 420–427. https://doi.org/10.1016/J.RSER.2007.10.001

Nieves, D. C., Karimi, K., & Horváth, I. S. (2011). Improvement of biogas production from oil palm empty fruit bunches (OPEFB). Industrial Crops and Products, 34(1), 1097–1101. https://doi.org/10.1016/j.indcrop.2011.03.022

Yunus, R., Salleh, S. F., Abdullah, N., & Biak, D. R. A. (2010). Effect of ultrasonic pre-treatment on low temperature acid hydrolysis of oil palm empty fruit bunch. Bioresource Technology, 101(24), 9792–9796. https://doi.org/10.1016/j.biortech.2010.07.074

Zheng, Y., Zhao, J., Xu, F., & Li, Y. (2014). Pretreatment of lignocellulosic biomass for enhanced biogas production. Progress in Energy and Combustion Science, 42(1), 35–53. https://doi.org/10.1016/j.pecs.2014.01.001

Pavlostathis, S. G., & Gossett, J. M. (1985). Alkaline treatment of wheat straw for increasing anaerobic biodegradability. Biotechnology and Bioengineering, 27(3), 334–344. https://doi.org/10.1002/bit.260270319

Gao, A. H., Bule, M. V., Laskar, D. D., & Chen, S. (2012). Structural and Thermal Characterization of Wheat Straw Pretreated with Aqueous Ammonia Soaking. Journal of Agricultural and Food Chemistry, 60(35), 8632–8639

A. Sluiter, B. Hames, R. Ruiz, C. S., & J. Sluiter, D. Templeton, and D. C. (2011). Determination of Structural Carbohydrates and Lignin in Biomass: Laboratory Analytical Procedure (LAP). Golden. https://doi.org/10.1007/s00449-014-1243-0

Sant’Anna, C., Costa, L. T., Abud, Y., Biancatto, L., Miguens, F. C., & de Souza, W. (2013). Sugarcane cell wall structure and lignin distribution investigated by confocal and electron microscopy. Microscopy Research and Technique, 76(8), 829–834. https://doi.org/10.1002/jemt.22235

Wang, Z. W., Lee, S. H., Elkins, J. G., Li, Y., Hamilton-Brehm, S., & Morrell-Falvey, J. L. (2013). Continuous live cell imaging of cellulose attachment by microbes under anaerobic and thermophilic conditions using confocal microscopy. Journal of Environmental Sciences (China), 25(5), 849–856. https://doi.org/10.1016/S1001-0742(12)60104-1

Travis, A. J., Murison, S. D., Perry, P., & Chesson, A. (1997). Measurement of cell wall volume using confocal microscopy and its application to studies of forage degradation. Annals of Botany, 80(1), 1–11. https://doi.org/10.1006/anbo.1997.042

Coletta, V. C., Rezende, C. A., Da Conceicao, F. R., Polikarpov, I., & Guimaraes, F. E. G. (2013). Mapping the lignin distribution in pretreated sugarcane bagasse by confocal and fluorescence lifetime imaging microscopy. Biotechnology for Biofuels, 6(1), 1–10. https://doi.org/10.1186/1754-6834-6-43

Fromm, J., Rockel, B., Lautner, S., Windeisen, E., & Wanner, G. (2003). Lignin distribution in wood cell walls determined by TEM and backscattered SEM techniques. Journal of Structural Biology, 143(1), 77–84. https://doi.org/10.1016/S1047-8477(03)00119-9

Ballard, D. H., Alexander, J. S., Weisman, J. A., Orchard, M. A., Williams, J. T., & D’Agostino, H. B. (2015). Number and location of drainage catheter side holes: In vitro evaluation. Clinical Radiology, 70(9), 974–980. https://doi.org/10.1016/j.crad.2015.05.004

Sant’Anna, C., & Souza, W. De. (2012). Microscopy as a Tool to Follow Deconstruction of Lignocellulosic Biomass. Current Microscopy Contributions to Advanced in Science and Technology, 639–645. https://doi.org/10.1007/s11136-011-0045-y

Tapen M Mukherjee, B. D. (1993). Diagnostic Electron Microscopy Procedure. Microscope Society of America..

Xu, F., Zhong, X. C., Sun, R. C., & Lu, Q. (2006). Anatomy, ultrastructure and lignin distribution in cell wall of Caragana Korshinskii. Industrial Crops and Products, 24(2), 186–193. https://doi.org/10.1016/j.indcrop.2006.04.002

Pingali, S. V., Urban, V. S., Heller, W. T., McGaughey, J., ONeill, H., Foston, M., … Evans, B. R. (2010). Breakdown of cell wall nanostructure in dilute acid pretreated biomass. Biomacromolecules, 11(9), 2329–2335. https://doi.org/10.1021/bm100455h