Amplifikasi Gen Resistensi Tembaga (Cur) pada Bakteri yang Diisolasi dari Limbah Industri di Surabaya

Main Article Content

Wahyu Irawati

Abstract

ABSTRACT

Copper pollution is one of the serious environmental problems in Indonesia. Higher concentration of copper is toxic so that threat living organism. Bio-remediation using copper resistant bacteria is effective for solving heavy metals pollution because the bacteria adapt easily when applied in environment. Using bacteria containing gene encoded copper resistance could help effort of copper bio-remediation. The purpose of this research is to isolate and characterize copper resistant bacteria from industrial sewage in Surabaya also to amplification of gene encoded resistance to copper (Cur). Bacteria was grown on Salts Base Solution medium with addition of appropriate concentration of copper. Resistance to copper was determined based on Minimum Inhibitory Concentration of CuSO4. Molecular characterization was done based on 16S rDNA gene analysis using universal primer. Amplification of Cur gene was done using specific primer of gene orf3, orf4, orf5 from Lactoccocus lactis. Three highly copper resistant bacteria have been isolated with the MIC of 2.5-7.5 mM CuSO4 encoded IrC1, IrC2, and IrC4. Isolate IrC4 is the highest copper resistant bacteria with the MIC of 7.5 mM. Resistance mechanism may be through accumulation copper inside the cells with the total of 371 mg/g dry weight of cells. The three bacteria have plasmid with the size of 21 kb. Isolate IrC4 have 96.99% similarity with Cupriavidus pauculus. Amplification of copper-resistance (Cur) gene demonstrated that a single band of 0.9 kb was obtained from isolate C4. The finding of indigenous resistant bacteria encoded Cur gene may give better solution for pollution problem in Indonesia.

Keywords: bacteria, copper, Isolate IrC4, Lactococcus lactis, resistant

ABSTRAK

Pencemaran tembaga di Indonesia merupakan salah satu masalah lingkungan yang serius sehingga perlu diatasi. Tembaga pada konsentrasi yang tinggi bersifat toksik sehingga mengancam kehidupan organisme. Bioremediasi menggunakan bakteri resisten tembaga yang diisolasi dari lingkungan tercemar terbukti efektif mengatasi pencemaran logam berat karena lebih mudah beradaptasi ketika diterapkan di lingkungan. Pemanfaatan bakteri yang mengandung gen penyandi resistensi tembaga dapat menunjang keberhasilan usaha bioremediasi tembaga. Penelitian ini bertujuan untuk mengisolasi dan mengkarakterisasi bakteri resisten tembaga dari limbah industri di Surabaya serta melakukan amplifikasi gen yang menyandi resistensi bakteri tersebut terhadap tembaga (Cur).  Isolasi bakteri dilakukan menggunakan medium Salt Base Solution dengan penambahan CuSO4. Uji resistensi ditentukan berdasarkan nilai Minimum Inhibitory Concentration (MIC) terhadap CuSO4. Karakterisasi molekular dilakukan berdasarkan analisis gen 16S rDNA menggunakan primer universal. Amplifikasi gen Cur dilakukan dengan menggunakan primer yang spesifik terhadap gen orf3, orf4, orf5 dari gen Cur pada Lactobacillus lactis. Hasil penelitian menunjukkan bahwa terdapat tiga isolat bakteri yang paling resisten dengan nilai MIC= 6.5-7.5 mM, yaitu isolat IrC1, IrC2, dan IrC4. isolat IrC4 merupakan isolat bakteri yang paling resisten dengan nilai MIC sebesar 7.5 mM. Mekanisme reistensi isolat IrC4 adalah dengan cara mengakumulasi tembaga di dalam sel selitar 371 mg/g berat kering sel. Ketiga isolat memiliki plasmid berukuran sekitar 21 kb. Analisis gen 16S rDNA menunjukkan bahwa isolat IrC4 memiliki kemiripan 96,99% dengan Cupriavidus pauculus. Gen Cur pada isolat IrC4 sepanjang 0.9 kb berhasil diamplifikasi dengan menggunakan primer spesifik gen orf3 yang menyandikan pengikatan tembaga. Penemuan bakteri indigen indonesia yang menyandikan gen resisten tembaga diharapkan dapat menunjang keberhasilan penanganan masalah pencemaran tembaga di Indonesia.

Kata kunci:  bakteri, isolat IrC4, Lactobacillus lactis, resisten, tembaga.

Article Details

Section
RESEARCH ARTICLES
Author Biography

Wahyu Irawati, Universitas Pelita Harapan

Biology Education Departmen

References

Das S, Dash HR, Chakraborty J. (2016). Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants. App Microbiol Biotechno. 100: 2967-2984.

Christian S. (2013). Isolation and characterization oaf yeast isolated from industrial sewage in Rungkut Surabaya. Skripsi. Universitas Gadjah Mada, Yogyakarta.

Ratnawati E. (2010). Pengaruh pH, konsentrasi biosorben dan waktu reaksi terhadap penurunan logam berat Pb dengan memanfaatkan limbah industri bir dalam bentuk pelet sebagai biosorben. Jurnal Kimia dan Kemasan. 32 (2): 73-78.

Zeyaullah Md, Islam B, Ali A. (2010). Isolation, identification, and PCR amplification of merA gene from highly mercury polluted Yamuna River. Afr J of Biotechnol. 9: 3510-3515.

Irawati W, Riak S, Sopiah N, Sulistia S. (2017). Heavy metal tolerance in indigenous bacteria isolated from the industrial sewage in Kemisan River, Tangerang, Banten, Indonesia. Biodiversitas. 18 (4): 1481-1486. DOI: 10.13057/biodiv/d180426.

Johncy RM, Hemambika B, Hemapriya J. Rajeshkannan V. (2010). Comparative assessment of heavy metal removal by immobilized and dead bacterial cells: a biosorption approach. Glob J Environ. Res 4(1): 23-30.

Irawati W, Yuwono T, Rusli A. (2016). Detection of Plasmids and Curing Analysis in Copper Resistant Bacteria Acinetobacter sp. C1, Acinetobacter sp. C2, and Cupriavidus sp. C4. Biodiversitas. 17(1): 296-300 doi: 10.13057/biodiv/d170140

Lüthje, F. L., Hasman, H., Aarestrup, F. M., Alwathnan, H. A., & Rensing, C.(2014). Genome squences of two copper-resistant Escherichia coli strains isolated from copper-fed Pigs. Genome Announcements, 2(6). doi:10.1128/genomeA.01341-14

Gutiérrez-Barranquero, J. A., Vicente, A. d., Carrión, V. J., Sundin, G. W., & Cazorla, F. M. (2012). Recruitment and rearrangement of three different genetic determinants into a conjugative plasmid increase copper resistance in Pseudomonas syringae. Applied and Environmental Microbiology, 79(3), 1028 –1033. doi:10.1128/AEM.02644-12

Kok, J., Gijtenbeek, L. A., Jong, A. d., Meulen, S. B., Solopova, A., & Kuipers, O. P. (2017). The Evolution of gene regulation research in Lactococcus lactis. Journal Investing in Science: FEMS Microbiology Reviews, 220–243. doi:10.1093/femsre/fux028

Melano,M.A. and D.A. Cooksey. (1988). Nucleotide Sequence and Organization of Copper Resistance Genes from Pseudomonas syringae pv. tomato. J. Bacteriol. 170(6) : 2879 – 2883.

Altimira, F., Yáñez, C., Bravo, G., González, M., Rojas, L. A., & Seeger, M. (2012). Characterization of copper-resistant bacteria and bacterial communities from copper-polluted agricultural soils of central Chile. BioMed Central Microbiology, 1-12.

Widodo. (2001). Molecular Analysis of a plasmid-Borne Copper resistance operon in Lactococcus lastis. M.Sc. Thesis. Department of Biotechnology. UNSW-Australia.

Williams,J.R., A.G.Morgan, D.A.Rouch, N.L.Brown, B.T.O.Lee. (1993). Copper-Resistant Enteric Bacteria from United Kingdom and Australian Piggeries. Appl. Environ. Microbiol, 59(8) : 2531 - 2537

Irawati W, Yuwono T, Hartiko H, Soedarsono J. (2012). Molecular and physiological characterization of copper-resistant bacteria isolated from activated sludge in an industrial wastewater treatment plant in Rungkut-Surabaya, Indonesia. Microbiol J. 6(3): 107-116. DOI:10.5454/mi.6.3.3

Massora, M., Martani, E., Sugiharto, E., Sarwom, R., & Sinaga, T. (2017). Seleksi material penempelan biofilm isolat bakteri resisten tembaga asal PT. Freeport Indonesia. Biowallacea, 4(1), 527-532.

Sambrook,J., E.F.Fritisch, T.Maniatis. (1989). Molecular Cloning. A laboratory Manual Second Edition. Cold Spring Harbor Laboratory Press.

Hardianto, D., Indarto, A., & Sasongko, N. D. (2015). Optimasi metode lisis Alkali untuk meningkatkan konsentrasi plasmid. Jurnal Bioteknologi dan Biosains Indonesia, 2(2), 60-64.

Pal A and Paul AK. (2010). Nickel uptake and intracellular localization in Cupriavidus pauculus KPS 201, native to ultramatic ecosystem. Adv Biosci. Biotech. 1:276-280. DOI: 10.4236/abb.2010.1403. 6

Gonzales AG, Shirokova LS, Porovski OS,. Emnova EE,. Martinez RE, dan Santana-Casiano JM. 2010. Adsorption of copper on Pseudomonas aureofaciens: protective role of surface exopolysaccharides. J. Colloid. Intl. Sci. 350, 305–314. https://doi.org/10.1016/j.jcis.2010.06.020

Abdullah, Hakim, L., fitriandi, E., & Rahmawati. (2018). Deteksi keberadaan bakteri resisten logam merkuri (Hg) pada penambangan emas tanpa izin (PETI) di Simpi, Sekadau, Kalimantan Barat. Indonesian Journal of Pure and Applied Chemistry, 1(2), 56-61.

Farisna, S. T., & Zulaika, E. (2015). Resistensi Bacillus endogenik Kalimas Surabaya terhadap logam besi (Fe). Jurnal Sains dan Seni ITS, 4(2), 84-87.

Kunito,T., K.Nagaoka, N.Tada, K.Saeki, K.Senoo, H.Oyaizu and S.Matsumoto. 1997. Characterization of Cu-resistant Bacterial Communities in Cu Contaminated Soils. Soil Sci. Nutri. 43(3) : 709 – 717.

Bodarczuk K, Piotrowak-Seget Z. 2013. Molecular basis of active copper resistance mechanisms in Gram-negative bacteria. Cell Biol Toxicol 29 (6): 397-405. DOI: 10.1007/s10565-013-9262-1

Macomber L, Imlay JA. 2009. The iron-sulfur clusters of dehydratates are primary intracellular targets of copper toxicity. Proc Natl Acad Sci U.S.A. 106: 8344-8349. DOI: 10.1073/pnas.0812808106.

Ahemad M, Malik A. 2012. Bioaccumulation of heavy metals by zinc resistant bacteria isolated from agricultural soils irrigated with wastewater. Bacteriol J 2(1):12-21.

Habi S, Daba H. 2009. Plasmid incidene, antibiotic and metal resistance among enterobacteriaceae isolated from Alegerian streams. Pak J Biol Sci 12: 1474-1482.

Rodrigues DF 2011. Biofilters: a solution for heavy metals removal from water. J Bioremed Biodegr. 2: e101. doi: 10.4172/2155-6199.1000e101.