Estimasi Beban Cemar dan Laju Dekomposisi Bahan Organik di Waduk Ir. H. Djuanda, Jawa Barat

Main Article Content

Andri Warsa
Lismining Pujiyani Astuti

Abstract

ABSTRACT

Ir. H. Djuanda or Jatiluhur reservoir as a multifunction water body with one of utilization as fish cultivation activity. Uneaten feed and fish excretion were organic matter sources. The number of floating net cages was increasing and it caused increasing in organic matter load. The objective of the research was to known organic matter load and decomposition rate (k) and BOD (Biochemical oxygen demand) ultimate (Lo) at Jatiluhur Reservoir. The research was done in February and August 2018 at three locations were Astap, Pasir Canar and Pulau Aki. The result of the research shown was organic load from cultivation activity was 70,595 tons/year. The decomposition rate of organic matter around 0.10-0.25 per day with BOD ultimate around 6.80-8.11 mg/L. The value of Lo was affected by organic matter concentration.

Keywords: Ir. H. Djuanda Reservoir, organic matter, decomposition rate, BOD ultimate

ABSTRAK

Waduk Ir. H. Djuanda atau yang dikenal dengan Waduk Jatiluhur merupakan waduk multifungsi yang salah satu pemanfaatannya untuk kegiatan budidaya ikan. Sisa pakan yang terbuang dan ekresi ikan merupakan sumber masukkan bahan organik. Jumlah keramba jaring apung (KJA) yang semakin bertambah akan menyebabkan beban masukkan bahan organik meningkat. Tujuan penelitian ini adalah untuk mengetahui beban masukkan bahan organik dari kegiatan budidaya dan laju dekomposisi bahan organik (k) serta BOD (Biochemical oxygen demand) ultimate (Lo) di Waduk Jatiluhur. Penelitian dilakukan pada bulan Februari dan Agustus 2018 pada tiga lokasi yaitu Astap, Pasir Canar dan Pulau Aki. Pendekatan yang digunakan dalam penentuan nilai k dan Lo adalah metode Grafik Thomas. Hasil penelitian menunjukkan bahwa beban masukkan bahan organik dari kegiatan budidaya sebesar 70.595 ton/tahun. Beban masukkan bahan organik telah melebihi daya dukung perairan. Nilai k untuk dekomposisi bahan organik di Waduk Jatiluhur berkisar 0,10-0,25 per hari dengan nilai Lo berkisar 6,80-8,11 mg/L. Nilai Lo dipengaruhi oleh konsentrasi bahan organik di perairan.   

Kata kunci: Waduk Ir. H. Djuanda, bahan organik, laju peluruhan, BOD ultimate 

Article Details

Section
RESEARCH ARTICLES

References

Shmeis, R. M. A. (2018). Water chemistry and microbiology. In Comprehensive Analytical Chemistry: Elsevier: 1-56

Xinglong, J & Boyd, B. E. (2005). Measurement of 5-day biochemical oxygen demand without sample dilution or bacterial and nutrient enhancement. Aquaculture Engineering 33: 250-257

Siwiec, T., Kiedrynska, L., Abramowicz, K & Rewicka, A. (2012). Analysis of chosen models describing the change in BOD5 in sewage. Environment Protection Engineering 38(2): 61-76

Cecen, F & Yangin, C. (2001). Application of various BOD test methods in landfill leachates. J. Environ. Sci. Health A36(4), 545-564.

Marske, D. M & Polkowski, L. B. (1972). Evaluation of methods for estimating biochemical oxygen demand parameters. Journal Water Pollution Control Federation 44(10): 1987-2000

Kale, V. S. (2016). Consequence of temperature, pH, turbidity and dissolved oxygen water quality parameters. International Advanced Research Journal in Science, Engineering and Technology 3(8): 186-190

Sullivan, A. B., Snyder, D. M & Rounds, S. A. (2010). Controls on biochemical oxygen demand in the upper Klamath River, Oregon. Chemical Geology 269: 12-21

Al-Sulaiman, A. M & Khudair, B. H. (2018). Correlation between BOD5 and COD for Al-Diwaniyah wastewater treatment plants to obtain the biodigrability indices. Pak. J. Biotechnol 15(2): 423-427

Gonzalez-Silvera, D., Izquierdo-Gomez, D., Fernandez-Gonzales, V., Martinez-Lopez, F. J., Lopez-Jimenez, J. A. & Sanches-Jerez, P. (2015). Mediterranean fouling communities assimilate the organic matter derived from coastal fish farms as a new trophic resource. Marine Pollution Bulletin 91(1): 45-53

Dos Santos Rosa, R., Aguiar, A. C. F., Boechat, I. G & Gucker, B. (2013). Impact of fish farm pollution on ecosystem structure and function of tropical headwater streams. Environmental Pollution 174: 204-213

Neumeier, U., Friend, P. L., Gangelhof, U., Lunding, J., Lundkvist, M., Bergamasco, A., Amos, C. L & Flindt, M. (2007). The influence of fish pellets on the stability of seabaed sediment: A laboratory flume investigation. Estuary, Coastal and Shelf Science 75: 347-357

Widyastuti, E., Sukanto & Setyaningrum, N. (2015). Pengaruh limbah organik terhadap status tropik, rasio N/P serta kelimpahan fitoplankton di Waduk Panglima Besar Soedirman Kabupaten Banjarnegara. Biosfera 32(1): 35-41

Astuti, L. P., Adiwilaga, E. M., Setiawan, B. I & Pratiwi, N. T. M. (2014). Effect of aeration on the rate of biochemical oxygen demand (BOD) in floating net cages in Ir. H. Djuanda Reservoir, West Java, Indonesia. Journal of Applied Biotechnology 2(2): 82-90

Simarmata, A. H., Adiwilaga, E. M., Lay, B. W & Prartono, T. (2008). Kajian keterkaitan antara cadangan oksigen dengan beban bahan organik di Zona Lakustrin dan Transisi di Waduk Ir. H. Djuanda. J. Lit. Perikan. Ind. 14(1): 1-14

Salmin. (2005). Oksigen terlarut (DO) dan kebutuhan oksigen bilogi (BOD) sebagai salah satu indikator untuk menentukan kualitas perarain. Oseana XXX (3): 21-26

Krevs, A., Kucinskiene, A. (2012). Microbial decomposition of organic matter in the bottom sediments of small lakes of the Urban Landscape (Lithuania). Microbial 81(4): 477-483

APHA (American Public Health Association). (2005). Standard Methods for the Examination of Water and Waste Water Including Bottom Sediment and Sludges. 21st edition. In: Eaton AD, Clesceri LS, Rice EW, Grennberg AE. Amer. Publ. Health Association Inc. New York. 1296p

Yun-Young, C., Seung-Ryong, B., Jae-In, K., Jeong-Woo, C., Jin, H., Tae-U, L., Cheol-Joon, P & Lee, B. J. (2017). Characteristics and biodegradability of wastewater organic matter in municipal wastewater treatment plant colleting domestic wastewater and industrial discharge. Water 9(409): 1-12

Ammary, B. Y. & Al-Samrraie, L. A. (2014). Evaluation and comparison of methods used for the determination of BOD first-order model coefficient. Int. J. Environment and Waste Management 13(4): 362-375

Palys, T. (2008). Purposive sampling. In Given, L. M (Edt). The Sage Encyclopediaof Qualitative Research Methods 2 Sage. Los Angeles, 697-698

Garno, Y.S. (2002). Beban pencemaran limbah perikanan budiaya dan yutrofikasi di perairan waduk pada DAS Citarum. Jurnal Teknologi Lingkungan 3(2): 112-120

Junaidi., Syandri, H. & Azrita. (2014). Loading and distribution of organic materials in Maninjau Lake West Sumatra Province-Indonesia. J. Aquac. Res. Development 5(7): 1-4

Schmittou, H. R. (1991). Budidaya Kermba: Suatu metode produksi ikan di Indonesia. FRDP, Puslitbang Perikanan, Jakarta. 126

JI, G. Z. (2008). Hydrodynamics and water quality: modelling river, lakes, and estuaries. Jhon Wiley & Sons. Canada. 676p

Singh B. (2004). Determination of BOD kinetic parameters and evaluation of alternate methods. Thesis. Department of Biotechnology & Environmental Sciences. Thapar Institute of Engineering & Technology. p 74

Oke, I. A & Akindahunsi, A. A. (2005). A statistical evaluation of methods of determining BOD rate. Journal of Applied Science Research 1(2): 223-227

Siwiec, T., Kiedrynska, L., Abramowicz, K., Rewicka, A. & Nowak. P. (2011). BOD measuring and modelling methods – review. Ann. Warsaw Univ. of Life Sci. – SGGW Land Reclam. 43 (2): 143-153

Sibil, R., Berkun, M & Bekiroglu, S. (2014). The comparison of different mathematical methods to determine the BOD parameters, a new developed methods and impacts of these parameters on the design of WWTPs. Applied Mathematical and Modelling 38: 641-658

Possignolo, N.V., Bertoncini, E.I., Vitti, A. C. (2017). Decomposition of the organic matter of natural and concentrated vinasse in sandy and clayey soils. Water science and Tecnology 76(3):728-738

Abery, N. W., Sukadi, F., Budhiman, A. A., Kartamihardja, E. S., Koeshendrajana, S., Buddhiman., De Silva. (2005). Fisheries and cage culture of three reservoirs in west java, Indonesia, a case study of ambitious development and resulting interactions. Fisheries Management and Ecology 12: 315-33031

Astuti, L.P. (2015). Intervensi internal terhadap biodegradasi bahan organik limbah keramba jaring apung di Waduk Ir. H. Djuanda dalam upaya memperbaiki kualitas perairan. Disertasi. Sekolah Pasca Sarjana Institut Pertanian Bogor. 52p

Garno, Y. S. (2006). Contribution of the organic waste from fish culture on the degradation of the water quality of reservoir Cirata. J. Tek. Ling 7(3): 302-310

Henny, C & Nomosatryo, S. (2016). Changes in water quality and trophic status associated with cage aquaculture in Lake Maninjau, Indonesia. IOP Conf. Series: Earth and Environmental Science 31:1-9

Mason, I. G., McLachlan, R. I & Gerard, D. T. (2006). A double exponential model for biochemical oxygen demand. Bioresource Technology 97: 273-282

Maiti, M., Majumder, S & Santra C. (2018). A comparative study of BOD rate constanta of two waste water samples. International Journal of Engineering Technology Science and Research 5(1):1219-1222

Tjahjo, D.W.H & Purnamaningtyas, S.E. (2008). Kajian kualitas air dalam evaluasi pengembangan perikanan di Waduk Ir. H. Djuanda, Jawa Barat. J. Lit. Perikan. Ind. 14(1): 15-30

Erses, A. S., Onay, T. T & Yenigun, O. (2008). Coparison of aerobic and anaerobic degradation of municipal solid waste in bioreactor landfills. Bioresource Tecnology 99: 5418-5426

Scow, K. M & Alexander, M. (1992). Effect of diffusion on the kinetics of biodegradation: experimental result with synthetic aggregates. Soil Sci. Soc. Am. J. 56: 128-1343

Vahatalo, A. V., Aarnos, H & Mantyniemi. (2010). Biodegradability continuum and biodegradation kinetics of natural organic matter described by the beta distribution. Biogeochemistry 100: 227-240

Conant, R. T., Ryan, M. G., Agren, G. I., Birge, H. E., Davidson, E. A., Eliasson, P. E. (2011). Temperature and soil organic matter decomposition rates-synthesis of current knowlwdgw and a way forward. Global Change Biology 17: 3392-3404

Kirwan, M. I., Guntensperger, G. R., Langley, J. A. (2014). Temperature sensitivity of organic-matter decay in tidal marshes. Biogeosciences 11: 4801-4808

Kelly, C. A., Rudd, J. W. M., Furutani, A. & Schindler, D. W. (1984). Effect of lake acidification on rates of organic matter decomposition in sediments. Linmol. Oceanogr. 29(4): 687-694

Chaudhuri, N., Tyagi, P. C., Niyogi, N., Thergaonkar, V. P., Khanna, P. (1992). BOD test for tropical countries. J. Environ. Eng 118: 298-303

Krachler, R. F., Krachler, R., Stojanovic, A., Wielander, B. & Herzig, A. (2009). Effect of pH on Aquatic biodegradation processes. Biogeosciences Discuss 6: 491-514

Bianchini Junior, I., Cunha-Santino, M. B., Ribeiro, J. U., Penteado, DGB. (2014). Implicatiom of anaerobic and aerobic of Eichhornia azurea (Sw.) Kunth. On the carbon cycling in a subtropical reservoir. Braz. J. Biol 74(1): 100-110

Dhage, S. S., Dalvi, A. A. & Prabhu, D. V. (2012). Reaction kinetics and validity of BOD test for domestic wastewater released in marine ecosystems. Environ. Monit. Assess. 184: 5301-5310

Simarmata, A. H. (2007). Kajian keterkaitan antara kemantapan cadangan oksigen dengan baban masukkan bahan organik di Waduk. Ir. H. Djuanda Purwakarta, Jawa Barat. Disertasi. Sekolah Pasca Sarjana. Institut Pertanian Bogor. Bogor. 142p

Astuti, P. L & Pratiwi, N. T. M. (2016). Evaluasi metode penentuan parameter biochemical oxygen demand (BOD). Limnotek 23(1): 44-49

Attiogbe, F. K., Glover-Amengor, M & Nyadziehe, K. T. (2007). Correlating biochemical and chemical oxygen demand of effluents- A case study of selected industries in Kumasi, Ghana. West African Journal of Applied Ecology 11: 155-164

Hoffmann, B., Muller, T & Jorgensen, G. (2010). Carbon dioxide production and oxygen consumption during the early decomposition of different litter types over a range of temperatures in soil-inoculated quartz sand. Plant Nutr. Soil Sci 173: 217-223

Dolgonosov, B. M., Gubernatorova, T. N. (2010). Modelling the biodegradation of Multicomponent organik matter in an aquatic environment: 1. Methodology. Water Resourcess 37(3): 311-319