Efektivitas Pengolahan Air yang Mengandung Amonia Konsentrasi Tinggi Menggunakan Konsorsium Probiotik Komersial dan Bakteri Sedimen Kolam Lele
Main Article Content
Abstract
ABSTRACT
Nitrification is one of the most widely used methods to reduce ammonia concentration in wastewater.The purpose of this study was to determine the effectiveness of high-concentrated ammonia nitrification by the consortium between commercial probiotics and bacteria from the sediment of the catfish pond. The study was conducted on batch system bioreactors with a working volume of 1 liter containing 100 mg/L ammonia solution and 50 grams sediment of catfish pond. This study used a treatment variation of the concentration of commercial probiotics and the bacterial isolate from the catfish pond sediment using glucose as the carbon source. The variations of commercial probiotics added to the bioreactor were 5 ml/L, 10 ml/L and 15 ml/L. The variations of glucose concentration were 0 g/L and 3,9 g/L. Analysis of ammonia concentration was carried out by spectrophotometry using the phenate method. The highest removal efficiency of ammonia was 92.35% in the bioreactor with a mixture of 15 ml/L commercial probiotics and 3.9 g/L glucose with the fastest ammonia rate was on the third day of the experimental period. The addition of glucose in the bioreactors could increase ammonia removal by 57.39%. The result of statistical analysis indicated that variations in the concentration of commercial probiotic indicated no statistically significant difference in ammonia removal (P> 0.05), while variations in glucose concentration showed a statistically significant difference in ammonia removal (P <0.05). Three isolates were successfully isolated on specific media for nitrifying bacteria. The result of bacterial identification showed that three isolated bacteria were Bacillus sp., Aeromonas salmonicida, and Burkholderia cepacia.
Keywords: ammonia, nitrification, sediment of catfish pond, commercial probiotic
ABSTRAK
Nitrifikasi merupakan salah satu metode yang paling banyak digunakan untuk mengurangi konsentrasi amonia pada limbah cair. Penelitian ini bertujuan untuk mengetahui efektivitas penambahan sedimen kolam lele dan probiotik komersial dalam nitrifikasi amonia konsentrasi tinggi. Penelitian menggunakan bioreaktor sistem batch dengan volume kerja 1 liter yang berisi larutan amonia 100 mg/L dan 50 gram sedimen kolam lele. Perlakuan pada penelitian ini terdiri dari pemberian variasi konsentrasi probiotik komersial dan sedimen kolam lele dengan sumber karbon glukosa. Variasi probiotik komersial yang ditambahkan pada bioreaktor adalah 5 ml/L, 10 ml/L dan 15 ml/L sedangkan variasi konsentrasi glukosa adalah 0 g/L dan 3,9 g/L. Analisis konsentrasi amonia dilakukan secara spektrofotometri menggunakan Metode Fenat. Hasil penurunan rata-rata amonia tertinggi adalah sebesar 92,35% pada bioreaktor dengan campuran probiotik komersial 15 ml/L dan glukosa 3,9 g/L dengan laju penurunan ammonia tercepat pada hari ke-3 periode eksperimen. Penambahan glukosa pada bioreaktor mampu meningkatkan penurunan amonia sebesar 57,39%. Analisis statistik menunjukkan bahwa variasi konsentrasi probiotik komersial tidak menunjukkan perbedaan signifikan pada penurunan amonia (p>0,05) sedangkan variasi konsentrasi glukosa menunjukkan perbedaan yang signifikan terhadap penurunan amonia (p<0,05). Tiga isolat berhasil diisolasi menggunakan media spesifik bakteri nitrifikasi. Hasil identifikasi dari tiga bakteri menunjukkan bahwa isolat tersebut adalah Bacillus sp., Aeromonas salmonicida dan Burkholderia cepacia.
Kata kunci: amonia, nitrifikasi, sedimen kolam lele, probiotik komersial
Article Details
JTL provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.
JTL by PTL-BPPT is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Permissions beyond the scope of this license may be available at http://ejurnal.bppt.go.id/index.php/JTL
References
United Nations World Water Assessment Programme. (2003). The United Nations World Water Development Report 2003: Water for People, Water for Life. Paris, UNESCO.
Calhoun, Y. & Seideman, D. (2005). Water pollution. Philadelphia: Chelsea House Publishers.
Hargreaves, J. A., & Tucker, C. S. (2004). Managing ammonia in fish ponds (Vol. 4603). Stoneville: Southern Regional Aquaculture Center.
World Health Organization. (2008). Guidelines for drinking-water quality. Geneva, WHO
Ahn, Y. H. (2006). Sustainable nitrogen elimination biotechnologies: a review. Process Biochemistry, 41(8), 1709-1721.
Guštin, S., & Marinšek-Logar, R. (2011). Effect of pH, temperature and air flow rate on the continuous ammonia stripping of the anaerobic digestion effluent. Process Safety and Environmental Protection, 89(1), 61-66.
Quan, X., Ye, C., Xiong, Y., Xiang, J., & Wang, F. (2010). Simultaneous removal of ammonia, P and COD from anaerobically digested piggery wastewater using an integrated process of chemical precipitation and air stripping. Journal of Hazardous Materials, 178(1), 326-332.
Jorgensen, T. C., & Weatherley, L. R. (2003). Ammonia removal from wastewater by ion exchange in the presence of organic contaminants. Water Research, 37(8), 1723-1728.
Barber, W. P., & Stuckey, D. C. (2000). Nitrogen removal in a modified anaerobic baffled reactor (ABR) 1, denitrification. Water Research, 34(9), 2413-2422.
Ward, B., Arp, D. & Klotz, M. (2011). Nitrification. Washington, DC: ASM Press
Kim, J. K., Park, K. J., Cho, K. S., Nam, S. W., Park, T. J., & Bajpai, R. (2005). Aerobic nitrification–denitrification by heterotrophic Bacillus strains. Bioresource Technology, 96(17), 1897-1906.
Loehr, R. (2012). Agricultural waste management: problems, processes, and approaches. Elsevier.
Wang, S., Liu, J., Li, C., & Chung, B. M. (2018). Efficiency of Nannochloropsis oculata and Bacillus polymyxa symbiotic composite at ammonium and phosphate removal from synthetic wastewater. Environmental technology, 1-26.
Gross, A., Boyd, C. E., & Wood, C. W. (2000). Nitrogen transformations and balance in channel catfish ponds. Aquacultural Engineering, 24(1), 1-14.
Ali, T. U., Ahmed, Z., & Kim, D. J. (2014). Estimation of N2O emission during wastewater nitrification with activated sludge: effect of ammonium and nitrite concentration by regression analysis. Journal of Industrial and Engineering Chemistry, 20(4), 2574-2579.
Ingram, J. & Anderson, J. (1993). Tropical soil biology and fertility: a handbook of methods. Wallingford: CAB International.
Yosmaniar, Y., Novita, H., & Setiadi, E. (2018). Isolasi dan karakterisasi bakteri nitrifikasi dan denitrifikasi sebagai kandidat probiotik. Jurnal Riset Akuakultur, 12(4), 369-378
Shen, Q. R., Ran, W., & Cao, Z. H. (2003). Mechanisms of nitrite accumulation occurring in soil nitrification. Chemosphere, 50(6), 747-753.
Komarawidjaja, W. (2011). Pengaruh perbedaan dosis oksigen terlarut (DO) pada degradasi amonium
kolam kajian budidaya udang. Jurnal Hidrosfir Indonesia, 1(1).
Li, C., Yang, J., Wang, X., Wang, E., Li, B., He, R., et al. (2015). Removal of nitrogen by heterotrophic nitrification-aerobic denitrification of a phosphate accumulating bacterium Pseudomonas stutzeri YG-24. Bioresour. Technol. 182, 18-25. doi: 10.1016/j.biortech.2015.01.100.
Beer, S.E., Connelly, T.L., Sipler, R.E., Yager, P.L., and Bronk, D.A. (2014). Effect of temperature on rates of ammonium uptake and nitrification in the western coastal Arctic during winter, spring, and summer. Global Biogeochem. Cycles. 28,1455-1466.doi:10.1002/2013GB004765.
Fumasoli, A., Morgenroth, E., and Udert, K.M. (2015). Modelling the low pH limit of Nitrosomonas eutropha in high-strength nitrogen wastewaters. Water Research. 83, 161-170.doi:10.1016 /j.watres.2015.06.013.
Huyen Le, T.T., Fettig, J., Meon, G. (2019). Kinetics and simulation of nitrification at various pH values of a polluted river in the tropics. Ecohydrology & Hydrobiology. 19, 54-65.doi:10.1016 /j.ecohyd.2018.06.006.