Teknologi Hidrotermal Sebagai Solusi Cepat Pengolahan Sampah Organik Menjadi Pupuk
Main Article Content
Abstract
ABSTRACT
Hydrothermal technology is a promising new technology that can turn organic waste into value-added, eco-friendly, and sustainable products. In this research, the hydrothermal reactor's performance for treating the food wastes into solid and liquid fertilizer was investigated. Hydrothermal reactor with SS 316 steel material with a maximum capacity of 100 kg per batch is equipped with a cooling water jacket. Raw vegetable wastes and water with a ratio of 1:1 were added into a mixing container. The waste slurry was transferred through the pump into the reactor. The hydrothermal process is carried out at a pressure of 5 bar or a temperature of around 160 °C for 30 and 60 min. The results showed that the hydrothermal process treated the vegetable waste at 120 minutes at a temperature of 160 °C and 5 bar pressure. Solid products showed a higher C/N ratio and N + P2O5 + K2O content in the process of 30 minutes compared to 60 minutes, which were 12.42 and 5.36, respectively. In comparison, liquid products showed higher results in the 30-minute process than 60-minutes process with the amount of N + P2O5 + K2O and C-organic, respectively 2.23 and 0.31. This result indicated that the hydrothermal process is proven to be able to treat the organic waste into a relatively fast and eco-friendly compost. In the future, it is expected that the big-scale of hydrothermal processes can be an alternative technology in processing wastes in Indonesia.
Keywords: hydrothermal, fertilizer, municipal solid waste, vegetables wastes, eco-friendly technology
ABSTRACT
Teknologi hidrotermal adalah teknologi baru yang menjanjikan yang dapat mengubah sampah organik menjadi produk yang bermanfaat, ramah lingkungan dan berkelanjutan. Dalam riset ini, unjuk kinerja reaktor hidrotermal untuk mengolah sampah sisa sayuran menjadi pupuk padat dan cair diinvestigasi. Reaktor hidrotermal dengan material baja SS 316 berkapasitas 100 kg per batch dilengkapi dengan dinding air pendingin. Bahan baku sisa sayuran dimasukkan dalam tangki pencampur dengan ditambahkan air pada jumlah yang sama. Setelah berbentuk seperti bubur kasar, sampah dipindahkan melalu pompa ke dalam reaktor. Proses hidrotermal dilakukan pada tekanan 5 bar atau suhu sekitar 160 °C dengan waktu 30 dan 60 menit. Hasil pengujian menunjukkan bahwa proses hidrotermal dengan bahan baku sampah sisa sayuran memerlukan total waktu 120 menit pada temperatur 160 °C dan tekanan 5 bar. Produk padat menunjukkan rasio C/N dan kandungan N + P2O5 + K2O yang lebih tinggi pada proses yang berlangsung 30 menit dibandingkan dengan 60 menit yaitu 12,42 dan 5,36 berturut turut. Produk cair menunjukkan hasil yang lebih tinggi pada proses 30 menit dibandingkan 60 menit dengan jumlah N+P2O5+K2O dan C-organik masing-masing sebesar 2,23 dan 0,31. Hal ini mengindikasikan bahwa proses hidrotermal terbukti dapat mengolah sampah organik menjadi kompos dalam waktu yang relatif cepat dan ramah lingkungan. Kedepan, diharapkan proses hidrotermal pada skala komersial dapat menjadi teknologi alternatif dalam mengolah sampah di Indonesia.
Kata kunci: hidrotermal, pupuk, sampah, sisa sayuran, teknologi ramah lingkungan
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
JTL provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.
JTL by PTL-BPPT is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Permissions beyond the scope of this license may be available at http://ejurnal.bppt.go.id/index.php/JTL
References
Keputusan Kepala Dinas Lingkungan Hidup Provinsi Daerah Khusus Ibukota Jakarta Nomor 699 Tahun 2017 tentang Timbulan, Komposisi, dan Karakteristik Sampah di TPS dan TPST Bantargebang.
Sahwan, F. L. (2010). Kualitas Produk Kompos dan Karakteristik Proses Pengomposan Sampah Kota Tanpa Pemilahan Awal.
He, W., LI, G., Kong, L., Wang. H., Huang, J., & Xu, J. (2008). Application of hydrothermal reaction in resource recovery of organic wastes. Volume 52, Issue 5, March 2008, Pages 691-699. https://doi.org/10.1016/j.resconrec.2007.11.003.
Prawisudha, P., Azka, G.R., Triyono,B., & Pasek, A.D. (2018). Multi-production of Solid Fuel and Liquid Fertilizer from Organic Waste by Employing Wet Torrefaction Process. AIP Conference Proceedings 1984, 030008 (2018); https://doi.org/10.1063/1.5046629 Published Online: 25 July 2018.
Idowu, I. M. (2018). Hydrothermal Carbonization of Food Waste for Nutrient Recovery and Reuse. Master’s Thesis. University of South Carolina.
Idowu, I. M., Li, L., Flora, J.R.V., Pellechia, P.J., Darko, S. A., Ro, K.S., & Berge, N.D. (2017). Hydrothermal Carbonization of Food Waste for Nuntrient Recovery and Reuse. Waste Management 69
Novita DM., & Damanhuri E. (2010). Perhitungan Nilai Kalor Berdasarkan Komposisi Dan Karakteristik Sampah Perkotaan Di Indonesia Dalam Konsep Waste To Energy. Jurnal Teknik Lingkungan Volume 16 Nomor 2, Oktober 2010 (hal. 103-114)
P.E. Savage, R.B. Levine, & C.M Huelsman,. (2010). Hydrothermal Processing of Biomass. In: Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals, Ch. 8. RSC Publishing, Cambridge.
Bimantoro, E.P. (2016). Pengaturan Konsumsi Bahan Bakar Pada Virtual Plant Boiler PLTU Menggunakan Kontroler Linear Quadratic Regulator. Teknik Elektro, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember (ITS)
Dewanti, D. P., & Sulaiman, A. (2019). Penentuan Temperatur Optimal Pembakaran Boiler untuk Karbonisasi Hidrotermal Sampah Organik Melalui Model Semi-Analitik Perpindahan Panas. Jurnal Teknologi Lingkungan, 20(2), 291-298.
Junting, Z., Guangming, Li., Wenzhi, he., Juwen, Huang., & Haochen, Zhu. (2016). Hydrothermal carbonization (HTC) for recovery of organic fractions in Municipal Solid Waste (OFMSW).
Robbiani, Z. (2013). Hydrothermal carbonization of biowaste/fecal sludge. Conception and construction of a HTC prototype research unit for developing countries. Department of Mechanical Engineering ETHZ in collaboration with Eawag/Sandec
Lian-hai, REN., Yong-feng, NIE., Jiann-guo, LIU., Yi-ying, JIN, & Lu, Sun. (2006). Impact of hydrothermal process on the nutrient ingredients of restaurant garbage. Journal of Environmental Sciences. Volume 18, Issue 5, September–October 2006, Pages 1012-1019.
Krysanova, K.O., Zaichenko, V.M., Sychev, G.A., Is’emin, R. L., Krylova, A.Y. (2019). Effect of Temperature on the Hydrothermal Carbonization of Organic Fertilizers with the Production of Carbon Fuel. Solid Fuel Chemistry volume 53, pages105–10.
Sundari, E., Sari E., & Rinaldo, R. (2012). Pembuatan Pupuk Organik Cair Menggunakan Bioaktivator Biosca dan EM14. Prosiding SNTK Topi 2012. ISSN. 1907-0500.
Funke, A. & Ziegler, F. (2010). Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. s.l. : Biofuels, Bioprod. Bioref. 4:160-177, 2010.
Trivana, L. & Pradhana, A.Y. (2017). Optimalisasi Waktu Pengomposan dan Kualitas Pupuk Kandang dari Kotoran Kambing dan Debu Sabut Kelapa dengan Bioaktivator PROMI dan Orgadec. Jurnal Sain Veteriner 35(1).
Abelleira, J., Perez-Elvira, S.I., Sanchez-Oneto, J., Portela, J.R. & Nebot, E. (2012). Advanced Thermal Hydrolysis of secondary sewage sludge: A novel process combining thermal hydrolysis and hydrogen peroxide addition. Resources, Conservation and Recycling, 59, 52– 57.
Falco, C., Baccile, N. & Titirici, M.M. (2011). Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons. Green Chemistry, 13, 3273-3281.
Fakkaew, K. (2016). Evaluation of Hydrothermal Carbonization Reactions for Faecal Sludge Treatment and Hydrochar Production. Asian Institute of Technology School of Environment, Resources and Development Thailand
Gao, J., Wang, X., Wang, J., Li, X., Cheng, J., Yang, H., & Chen, H. (2013). Effect of residence time on chemical and structural properties of hydrochar obtained by hydrothermal carbonization of water hyacinth. Energy. Volume 58, 1 September 2013, Pages 376-383
Ulbrich, M., Prebl, D., Frendt, S., Gaderer, M., & Spliethoff, H. (2017). Impact of HTC reaction conditions on the hydrochar properties and CO2 gasification properties of spent grains. Fuel Processing Technology Volume 167, 1 December 2017, Pages 663-669.
Wang, M., Zhang, Bo., Cai, C., Xin, Yanjun., & Liu, H. (2018). Acidic hydrothermal treatment: Characteristics of organic, nitrogen and phosphorus releasing and process optimization on lincomycin removal from lincomycin mycelial residues. Chemical Engineering Journal 336 (2018) 436-444.
Siboro, E.S., Surya, E., & Herlina, N. (2013). Pembuatan Pupuk Cair Dan Biogas Dari Campuran Limbah Sayuran. Jurnal Teknik Kimia USU, Vol. 2, No. 3