Pemantauan Konsentrasi PM2.5 dan CO2 Berbasis Low-Cost Sensor secara Real-Time di Cekungan Udara Bandung Raya
Main Article Content
Abstract
ABSTRACT
Field observation of PM2.5 and CO2 concentrations and meteorological conditions using low-cost sensors in real-time was carried out in the Greater Bandung air basin on Mar. 12 – Apr. 25, 2019. PM2.5 and CO2 sensors, as well as detectors of meteorological parameters, have been calibrated in the Laboratory. The instruments were placed in two locations (±300 m apart horizontally and ±20 m vertically), namely Tokong Nanas Building (Location 1 / L1) and Deli Building (L2), Telkom University, Bandung. Data was stored in the data logger and sent to the cloud database every 2-min through the GSM module. The results show that the same air mass in both locations has identified, except for some events that are affected by anthropogenic activities (those concentrations in L2 > L1) and wind speed/direction (time delay). The daily-average PM2.5 and CO2 concentrations at L1 and L2 are 52 µg m-3 and 580 ppm, and 70 µg m-3 and 809 ppm. PM2.5 and CO2 mass concentrations relatively higher (±172 µg m-3 and 916 ppm) at night due to a stable atmosphere (potential temperature, dθ/dz > 0, typical data from 20:00 to 3:00 local time), lower planetary boundary layer, and mixed local emissions and transboundary air pollutants. Meanwhile, lower CO2 concentrations in daytime mostly occur due to the activity of vegetation, which actively absorbs CO2 in the photosynthesis process. The fluctuation of those concentrations due to polluted air suggests that the performances of low-cost sensors can be adequately used properly for ambient air quality monitoring.Â
Keywords: CO2, low-cost sensors, PM2.5, potential temperature
ABSTRAK
Pemantauan konsentrasi PM2.5 dan CO2 serta kondisi meteorologi berbasis low-cost sensors secara real-time di cekungan udara Bandung Raya telah dilakukan pada 12 Maret-25 April 2019. Sensor PM2.5 dan CO2, serta detektor parameter meteorologi telah dikalibrasi di Laboratorium. Alat ukur ditempatkan di dua lokasi dengan perbedaan jarak ±300 m dan ketinggian ±20 m, yaitu Gedung Tokong Nanas (Lokasi 1 / L1) dan Gedung Deli (L2), Universitas Telkom, Bandung. Komunikasi data menggunakan modul GSM (SIM900A) dan data disimpan di data logger dan dikirimkan ke cloud database per 2 menit. Hasil pengukuran menunjukkan bahwa massa udara di kedua lokasi memiliki tren data konsentrasi PM2.5 dan CO2 yang relatif homogen, kecuali pada beberapa kejadian yang dipengaruhi oleh aktivitas antropogenik (konsentrasi PM2.5 dan CO2 di L2 > L1) serta arah dan kecepatan angin (adanya perbedaan konsentrasi massa PM2.5 akibat penundaan waktu). Rerata harian konsentrasi PM2.5 dan CO2 di L1 dan L2 berturut-turut adalah 52 µg m-3 dan 580 ppm serta 70 µg m-3 dan 809 ppm. Konsentrasi massa PM2.5 dan CO2 yang relatif lebih tinggi (±172 µg m-3 dan 916 ppm) di malam hari akibat atmosfer yang lebih stabil (temperatur potensial, dθ/dz > 0, tipikal dari pukul 20:00-03:00), penurunan planetary boundary layer, dan terjadinya pencampuran partikulat lokal dengan polutan udara lintas batas. Sedangkan, konsentrasi CO2 yang relatif lebih rendah di siang hari sebagian besar terjadi akibat aktivitas vegetasi yang aktif menyerap CO2 pada proses fotosintesis. Fluktuasi konsentrasi karena udara tercemar menunjukkan bahwa kinerja low-cost sensors dapat digunakan dengan baik untuk memantau kualitas udara di atmosfer.
Kata kunci: CO2, low-cost sensor, PM2.5, temperatur potensial
Article Details
JTL provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.
JTL by PTL-BPPT is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Permissions beyond the scope of this license may be available at http://ejurnal.bppt.go.id/index.php/JTL
References
Haryanto, B., & Franklin, P. (2011). Air pollution: a tale of two countries. Rev. Environ. Health, 26 (1), 53-59. Doi: 10.1515/reveh.2011.008.
Li, L., Qian, J., Ou, C.-Q., Zhou, Y.-X., Guo, C., & Guo, Y. (2014). Spatial and temporal analysis of air pollution index and its timescale-dependent relationship with meteorological factors in Guangzhou, China, 2001-2011. Environ. Pollut., 190, 75-81. Doi: 10.1016/j.envpol.2014.03.020.
Sumaryati (2011). Polusi Udara di Kawasan Cekungan Bandung. Berita Dirgantara, 12 (3), 83-89.
Proyeksi penduduk Jawa Barat 2010-2018. (2019). Badan Pusat Statistik Provinsi Jawa Barat.
Budiyono, Afif (2001). Pencemaran udara: dampak pencemaran udara pada lingkungan. Berita Dirgantara, 2 (1).
Asri, D. U., & Hidayat, B. (2005). Current transportation issues in Jakarta and its impacts on environment. Proceedings of the Eastern Asia Society for Transportation Studies, 5, 1792-1798.
Awaludin, A., Nugroho, G. A., Latief C., & Budiyono A. (2010). Rancang bangun alat pengukur dan sistem jaringan data CO2 di Indonesia berbasis web. Berita Dirgantara, 8 (1).
Kim Oanh, N.T., Upadhyay, N., Zhuang, Y. -H., Hao, Z. -P., Murthy, D. V. S., Lestari, P., Villarin, J.T., Chengchua, K., Co, H. X., Dung, N. T., & Lindgren, E.S. (2006). Particulate air pollution in six Asian cities: spatial and temporal distributions, and associated sources. Atmos. Environ., 40 (18). 3367-3380. Doi: 10.1016/j.atmosenv.2006.01.050.
Santoso, M., Lestiani, D. D., Kurniawati, S., Markwitz, A., Trompetter, W. J., Barry, B., & Davy, P. K. (2014). Long term airborne lead pollution monitoring in Bandung, Indonesia. International Journal of PIXE, 24 (03n04), 151-159. Doi: 10.1142/s0129083514400087.
Majid, L. I., Chandra, I., & Utami, A. R. I., (2019). Observasi Lapangan Mikropartikel Di Atmosfer Menggunakan Nanosampler Pada Cekungan Udara Bandung Raya. eProceedings of Engineering, 6 (1).
Jurányi, Z., Burtscher, H., Loepfe, M., Nenkov, M., & Weingartner, E. (2015). Dual-wavelength light-scattering technique for selective detection of volcanic ash particles in the presence of water droplets. Atmos. Meas. Tech., 8, 5213-5222. Doi: 10.5194/amt-8-5213-2015.
Jayaratne, R., Liu, X., Thai, P., Dunbabin, M., & Morawska, L. (2018). The influence of humidity on the performance of a low-cost air particle mass sensor and the effect of atmospheric fog. Atmos. Meas. Tech., 11, 4883-4890. Doi: 10.5194/amt-11-4883-2018.
Hodgkinson, J., Smith, R., Ho, W., Saffell, J. R., & Tatam, R. P. (2012). A low cost, optically efficient carbon dioxide sensor based on nondispersive infra-red (NDIR) measurement at 4.2 μm. Proc. SPIE 8439, Optical Sensing and Detection II, 843919. Doi: 10.1117/12.922258.
Marinov, M., Nikolov, G., Gieva, E., & Ganev, B. (2015). Improvement of NDIR carbon dioxide sensor accuracy. 38th International Spring Seminar on Electronics Technology (ISSE). Doi: 10.1109/isse.2015.7248042.
Vaicdan, F., Chandra, I., & Suhendi, A., (2019). Pengamatan Konsentrasi Massa PM2.5 Di Cekungan Udara Bandung Raya. eProceedings of Engineering, 6 (1).
Barus, R. A. A., Chandra, I., & Fathona, I. W., (2019). Rancang bangun portable weather station dalam mendukung pengamatan mikropartikel di cekungan udara Bandung Raya. eProceedings of Engineering, 6 (1).
Fan, H. & Sailor, D. (2005). Modeling the impacts of anthropogenic heating on the urban climate of Philadelphia: a comparison of implementations in two PBL schemes. Atmos. Environ., 39 (1), 73-84. Doi: 10.1016/j.atmosenv.2004.09.031.
Kaimal, J. C. & Finnigan, J. J. (1994). Atmospheric boundary layer flows: their structure and measurement. Oxford: Oxford University Press.
Urry, L. A., Cain, M. L., Wasserman, S. A., Minorsky, P. V., & Reece, J. B. (2017). Campbell Biology, 11th Edition. New York: Pearson.