Aplikasi Proses Anammox Dalam Penyisihan Nitrogen Menggunakan Reaktor Up-Flow Anaerobic Sludge Blanket

Main Article Content

Zulkarnaini Zulkarnaini
Reri Afrianita
Ilham Hagi Putra



Anammox process is a more practical alternative in biological nitrogen removal compared to conventional nitrification-denitrification processes. This process conducted at the optimum temperature of 370C. Indonesia, as a tropical country, has the potential for the application of anammox processes to remove nitrogen in wastewater. The purpose of this study was to analyze the efficiency of nitrogen removal in the anammox process using the Up-Flow Anaerobic Sludge Blanket (UASB) reactor at ambient temperature with variations in the hydraulic retention time (HRT) of 24 hours and 12 hours, at the laboratory scale. Samples are measured twice a week using a UV-Vis spectrophotometer. As a seeding sludge for start-up, the reactor was inoculated with granular anammox bacteria genus Candidatus Brocadia. At the stable operation, the ratio of ΔNO2--N:ΔNH4+-N and ΔNO3--N:ΔNH4+-N approach the stoichiometry of the anammox process were 1.20 and 0.21, respectively. The performance of nitrogen removal with 24-hour HRT obtained a maximum nitrogen removal rate (NRR) of 0.113 kg-N/m3.d with nitrogen loading rate (NLR) 0.14 kg-N/m3.d, and at 12-hour HRT, maximum NRR  of 0.196 kg-N/m3.d with NLR 0,28 kg-N/m3.d. Ammonium Conversion Efficiency (ACE) and Nitrogen Removal Efficiency (NRE) maximum for HRT 24 hours were 82% and 77%, respectively while HRT 12 hours were 72% and 68%, respectively. The anammox process operated stably in the tropical temperature with a temperature range of 23-280C on a laboratory scale using the UASB reactor.

Keywords: anammox, nitrogen, temperature, tropical, uasb.


Proses anammox menjadi alternatif yang lebih efektif dalam penyisihan nitrogen secara biologi dibandingkan dengan proses konvensional nitrifikasi-denitrifikasi. Proses ini berlangsung optimum pada suhu 370C. Indonesia sebagai negara tropis memiliki potensi untuk aplikasi proses anammox untuk menghilangkan nitrogen pada air limbah. Penelitian ini bertujuan untuk menganalisis efesiensi penyisihan nitrogen pada proses anammox menggunakan Up-Flow Anaerobic Sludge Blanket (UASB) reaktor pada suhu ambien dengan variasi Waktu Tinggal Hidrolik (WTH) 24 jam dan 12 jam, pada skala laboratorium. Sampel diukur dua kali setiap minggu menggunakan spektrofotometer UV-Vis. Sebagai seeding sludge (lumpur biakan) untuk start-up (memulai) reaktor digunakan bakteri anammox genus Candidatus Brocadia berbentuk granular. Berdasarkan hasil pengukuran, didapatkan nilai rasio ΔNO2--N:ΔNH4+-N dan ΔNO3--N:ΔNH4+-N mendekati stoikiometri proses anammox yaitu 1,20 dan 0,21. Kinerja penyisihan nitrogen dengan WTH 24 jam didapatkan nilai tingkat penyisihan nitrogen (TPyN ) maksimum 0,113 kg-N/m3.h pada tingkat pemuatan nitrogen (TPN) 0,14 kg-N/m3.h, dan WTH 12 jam nilai TPyN  maksimum 0,196 kg-N/m3.h pada TPN 0,28 kg-N/m3.h. Nilai efisiensi konversi amonia (EKA) dan efisiensi penyisihan nitrogen (EPN) maksimum pada WTH 24 jam berturut-turut adalah 82% dan 77%, sedangkan pada WTH 12 jam berturut-turut adalah 72% dan 68%. Penelitian membuktikan bahwa proses anammox dapat berlangsung stabil pada daerah tropis dengan suhu terukur 21-290C pada skala laboratorium menggunakan UASB reaktor. 

Kata kunci: Anammox, nitrogen, temperatur, tropis, uasb.

Article Details

Author Biographies

Zulkarnaini Zulkarnaini, Universitas Andalas

Teknik Lingkungan

Reri Afrianita, Universitas Andalas

Teknik Lingkungan

Ilham Hagi Putra, Universitas Andalas

Teknik Lingkungan


Kartal B, Almeida NM De, Maalcke WJ, Camp HJMO Den, Jetten MSM, Keltjens JT. (2013). How to make a living from anaerobic ammonium oxidation. FEMS Microbiol Rev. 37(3):428-461. doi:10.1111/1574-6976.12014

Ali M, Okabe S. (2015). Anammox-based technologies for nitrogen removal: Advances in process start-up and remaining issues. Chemosphere. 141:144-153. doi:10.1016/j.chemosphere.2015.06.094

Lackner S, Gilbert EM, Vlaeminck SE, Joss A, Horn H, van Loosdrecht MCM. (2014). Full-scale partial nitritation/anammox experiences - An application survey. Water Res. 55(0):292-303. doi:10.1016/j.watres.2014.02.032

Strous M, Gijs Kuenen J, Jetten MSM. (1999). Key Physiology of Anaerobic Ammonium Oxidation Downloaded from. Appl Environ Microbiol. 65(7):3248-3250. doi:papers2://publication/uuid/E9A1573A-6D62-420E-94D0-CA7C84D0FEB9

Hendrickx TLG, Wang Y, Kampman C, Zeeman G, Temmink H, Buisman CJN. (2012). Autotrophic nitrogen removal from low strength waste water at low temperature. Water Res. 46(7):2187-2193. doi:10.1016/j.watres.2012.01.037

Ma B, Peng Y, Zhang S, et al. (2013). Performance of anammox UASB reactor treating low strength wastewater under moderate and low temperatures. Bioresour Technol. 129:606-611. doi:10.1016/j.biortech.2012.11.025

Kumar M, Daverey A, Gu JD, Lin JG. (2016). Anammox Processes. doi:10.1016/B978-0-444-63665-2.00015-1

Van De Graaf AA, De Bruijn P, Robertson LA, Jetten MSMM, Kuenen JG. (1996). Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology. 142(8):2187-2196. doi:10.1099/13500872-142-8-2187

Strous M, Heijnen JJ, Kuenen JG, et al. (1998). The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl Microbiol Biotechnol. 50(5):589-596. doi:10.1007/s002530051340

Lotti T, Kleerebezem R, Lubello C, van Loosdrecht MCMM. (2014). Physiological and kinetic characterization of a suspended cell anammox culture. Water Res. 60:1-14. doi:10.1016/j.watres.2014.04.017

Kindaichi T, Yuri S, Ozaki N, Ohashi A. (2012). Ecophysiological role and function of uncultured Chloroflexi in an anammox reactor. 66(October):2561. doi:10.2166/wst.2012.479

Winkler MKH, Yang J, Kleerebezem R, et al. (2012). Nitrate reduction by organotrophic Anammox bacteria in a nitritation/anammox granular sludge and a moving bed biofilm reactor. Bioresour Technol. 114:217-223. doi:10.1016/j.biortech.2012.03.070

Du R, Cao S, Wang S, Niu M, Peng Y. (2016). Performance of partial denitrification (PD)-ANAMMOX process in simultaneously treating nitrate and low C/N domestic wastewater at low temperature. Bioresour Technol. 219(3):420-429. doi:10.1016/j.biortech.2016.07.101

Oshiki M, Shimokawa M, Fujii N, Satoh H, Okabe S. (2011). Physiological characteristics of the anaerobic ammonium-oxidizing bacterium “Candidatus Brocadia sinica.†Microbiology. 157(6):1706-1713. doi:10.1099/mic.0.048595-0

van der Star WRLL, Abma WR, Blommers D, et al. (2007). Startup of reactors for anoxic ammonium oxidation: Experiences from the first full-scale anammox reactor in Rotterdam. Water Res. 41(18):4149-4163. doi:10.1016/j.watres.2007.03.044

Strous M, Kuenen JG, Jetten MSM. (1999). Key Physiology of Anaerobic Ammonium Oxidation Key Physiology of Anaerobic Ammonium Oxidation. Appl Environ Microbiol. 65(7):0-3. doi:papers2://publication/uuid/E9A1573A-6D62-420E-94D0-CA7C84D0FEB9

Dapena-Mora A, Fernández I, Campos JL, et al. (2007). Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production. Enzyme Microb Technol. 40(4):859-865. doi:10.1016/j.enzmictec.2006.06.018

Agustina TE, Novia N, Diansyah G, Ike M, Soda S. (2017). Nitrogen Removal by Anammox Biofilm Column Reactor at Moderately Low Temperature. Indones J Fundam Appl Chem. 2(3):78-82. doi:10.24845/ijfac.v2.i4.78

Zulkarnaini, Nur A, Ermaliza W. (2019). Nitrogen Removal in the Anammox Biofilm Reactor using Palm Fiber as Carrier in Tropical Temperature Operation. Jurnal Riset Teknologi Pencegahan Pencemaran Industri. 10(2):7-15.

Oshiki M, Shimokawa M, Fujii N, Satoh H, Okabe S. (2011). Physiological characteristics of the anaerobic ammonium-oxidizing bacterium ‘ Candidatus Brocadia sinica .’ 1706-1713. doi:10.1099/mic.0.048595-0

Egli K, Fanger U, Alvarez PJJ, Siegrist H, Van der Meer JR, Zehnder AJB. (2001). Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Arch Microbiol. 175(3):198-207. doi:10.1007/s002030100255

Dosta J, Fernandez I, Vazquez-Padin J, et al. (2008). Short- and long-term effects of temperature on the ANAMMOX process. J Hazard Mater. 154:688-693. doi:10.1016/j.jhazmat.2007.10.082

Isaka K, Sumino T, Tsuneda S. (2007). High nitrogen removal performance at moderately low temperature utilizing anaerobic ammonium oxidation reactions. J Biosci Bioeng. 103(5):486-490. doi:10.1263/jbb.103.486

Lotti T, Kleerebezem R, van Loosdrecht MCM. (2015). Effect of temperature change on anammox activity. Biotechnol Bioeng. 112(1):98-103. doi:10.1002/bit.25333

Jaroszynski LW, Cicek N, Sparling R, Oleszkiewicz JA. (2011). Bioresource Technology Importance of the operating pH in maintaining the stability of anoxic ammonium oxidation ( anammox ) activity in moving bed biofilm reactors. Bioresour Technol. 102(14):7051-7056. doi:10.1016/j.biortech.2011.04.069

Tang C, Zheng P, Wang C, et al. (2010). Performance of high-loaded ANAMMOX UASB reactors containing granular sludge. Water Res. 45(1):135-144. doi:10.1016/j.watres.2010.08.018

Li X, Sun S, Badgley BD, Sung S, Zhang H, He Z. (2016). Nitrogen removal by granular nitritation-anammox in an upflow membrane-aerated biofilm reactor. Water Res. 94:23-31. doi:10.1016/j.watres.2016.02.031