Pengaruh Interval Waktu Panen terhadap Produksi Biomassa Chlorella sp. dan Melosira sp. untuk Penangkapan Karbon secara Biologi

Main Article Content

Joko Prayitno
Iklima Ika Rahmasari
Agus Rifai

Abstract

ABSTRACT

The aim of this study was to determine the effect of harvesting frequency on the growth of Chlorella sp. and Melosira sp. and on their total biomass production to estimate the amount of carbon fixed during 11 days of culture. Chlorella sp. and Melosira sp. were cultured in f/2 medium in seawater. The biomass was harvested at harvesting intervals of every day (P1), every 2 days (P2) and every 3 days (P3). The biomass of Chlorella sp. harvested at P1, P2 and P3 were 0,49 g/L, 0,43 g/L, and 0,35 g/L, respectively. The highest total biomass production of Chlorella sp. after 11 days of cultivation was obtained from P1 (8,80 g/L), while total biomass production at P2 and P3 were 52% (4,59 g/L) and 30% (3,25 g/L) of that P1, respectively. The biomass harvested at P1, P2 and P3 were 2,41 g/L, 1,40 g/L, and 1,63 g/L. Total biomass production of Melosira sp. during 11 days of cultivation for P1, P2 and P3 were 34,56 g/L, 17,33 g/L, 11,20 g/L, respectively. Our results showed that the highest total biomass production of both Chlorella sp. and Melosira sp. were obtained from harvesting every day. The estimated value of CO2 bio-fixation based on biomass production by Chlorella sp. and Melosira sp. were 1,5 g/L/day and 5,9 g/L/day, respectively.

Keywords: biomass, microalgae, Chlorella sp, harvesting interval, Melosira sp, carbon capture

 ABSTRAK

Penelitian ini bertujuan untuk mengetahui pengaruh interval waktu panen biomassa mikroalga terhadap pertumbuhan Chlorella sp. dan Melosira sp., dan perolehan total biomassanya untuk estimasi CO2 yang difiksasi selama kultur 11 hari. Chlorella sp. dan Melosira sp. dikultivasi dalam media air laut yang berisi nutrien f/2. Biomassa mikroalga dipanen dengan interval waktu panen tiap hari (P1), tiap 2 hari (P2) dan tiap 3 hari (P3). Sebagai kontrol (P0), biomassa mikroalga dipanen hanya pada akhir percobaan yaitu di hari ke-11. Kelimpahan sel kultur Chlorella sp. pada perlakuan P1, P2 and P3 masing-masing adalah 2,38x106 sel/mL, 2x106 sel/mL,1,5x106 sel/mL, sedangkan total biomassa yang diperoleh masing-masing adalah 0,49 g/L, 0,43 g/L, dan 0,35 g/L. Total produksi biomassa Chlorella sp. tertinggi yang diperoleh selama 11 hari kultivasi dijumpai pada perlakuan P1 (8,80 g/L), sedangkan total produksi biomassa pada P2 dan P3 hanya 52% (4,59 g/L) dan 30% (3,25 g/L) dari total biomassa P1. Kelimpahan sel Melosira sp. yang dipanen dengan interval P1, P2 dan P3 masing-masing adalah 4,28x106 sel/mL, 2,22x106 sel/mL, dan 2,36x106 sel/mL, dan biomassa yang diperoleh masing-masing adalah 2,41 g/L, 1,40 g/L, dan 1,63 g/L. Total produksi biomassa Melosira sp. yang diperoleh selama 11 hari kultivasi untuk perlakuan P1, P2 dan P3 masing-masing adalah 34,56 g/L,17,33 g/L, dan 11,20 g/L. Hasil percobaan ini menunjukkan bahwa total produksi biomassa tertinggi pada Chlorella sp. dan Melosira sp.dijumpai pada kultur yang dipanen setiap hari. Estimasi serapan karbon berdasarkan biomasa yang dihasilkan oleh Chlorella sp dan Melosira sp. masing-masing adalah 1,5 g/L/hari dan 5,9 g/L/hari.

Kata kunci: biomassa, mikroalga, Chlorella sp., interval panen, Melosira sp., penangkapan karbon

Article Details

Section
RESEARCH ARTICLES
Author Biography

Joko Prayitno, Badan Pengkajian dan Penerapan Teknologi

Pusat Teknologi Lingkungan

References

Maity, J. P., Bundschuh, J., Chen, C. Y., & Bhattacharya, P. (2014). Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: Present and future perspectives–A mini review. Energy, 78, 104-113.

Setiawan, A., Darmawan, R. A., & Santoso, A. D. (2009). Penerapan teknologi fotobioreaktor mikroalga jenis air-lift untuk menyerap emisi gas CO2. J. Teknologi Lingkungan. Edisi Khusus, 49, 56.

Santoso, A. D., Darmawan, R. A., & Susanto, J. P. (2016). Pengaruh laju alir injeksi gas emisi pada fotobioreaktor terhadap penyerapan CO2oleh Chlorella sp. Jurnal Teknologi Lingkungan, 12(1), 1-6.

Lardon, L., Helias, A., Sialve, B., Steyer, J. P., & Bernard, O. (2009). Life-cycle assessment of biodiesel production from microalgae. Environ. Sci Technol. 2009, 43:6475-6481.

Jacob-Lopes, E., Scoparo, C. H. G., Queiroz, M. I., & Franco, T. T. (2010). Biotransformations of carbon dioxide in photobioreactors. Energy Conversion and Management, 51(5), 894-900.

Sun, N., WangY., Li Y.T., HuangJ.C. & Chen, F. (2008). sugar-based growth, astaxanthin accumulation and carotenogenic transcription of heterotrophic Chlorella zofingiensis (Chlorophyta). Process Biochem. 43: 1288-1292.

Chen, P., Min M., Yifeng C., Liang W., Yecong Li, Qin Chen, Chenguang W., Yiqin W., Xiaoquan W., Yanling C., Shaobo D., Kevin H., Xiangyang L., Yuhuan L., Yingkuan W., Blanca M. & Roger R. (2009). Review of the biological and engineering aspects of algae to fuels approach. Int J Agric & Biol Eng.2(4): 1-29.

Mulyanto, A. (2010). Mikroalga (Chlorella sp.) sebagai agensia penambat gas karbon dioksida. J. Hidrosfir Indonesia. 5(2): 13-23.

Grima, E.M., Belarbi, E.H., Acién Fernández, F.G., Robles Medina, A.& Chisti, Y. (2003). Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol. Adv.20: 491-515.

Pires, J. C. M., Alvim-Ferraz, M. C. M., Martins, F. G., & Simões, M. (2012). Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept. Renewable and Sustainable Energy Reviews, 16(5), 3043-3053.

Morales, P., Martinez L.A.& Camalich J.M.Carpizo. (2015). Dry Weight, carbon, C/N Ratio, hydrogen, and chlorophyll variation during exponential growth of selected microalgae species used in aquaculture. CICIMAR Oceanides. 30(1): 33-43.

Farrelly, D. J., Everard, C. D., Fagan, C. C., & McDonnell, K. P. (2013). Carbon sequestration and the role of biological carbon mitigation: a review. Renewable and Sustainable Energy Reviews, 21, 712-727.

Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology advances, 25(3), 294-306.

Ferreira, M., Paula C., Pedro S., Jaime F. & Ana O. (2009). Enriching rotifers with “Premium†microalgae Nanochloropsis gaditana. Mar Biotechnol. 11: 585-595.

Armanda, D.T. (2013). Pertumbuhan kultur mikroalga diatom Skeletonema costatum (Greville) Cleve Isolat Jepara pada Medium f/2 dan Medium Conway. Bioma.2(1):49-63.

Richmond, A., Zhang C.W. & Yair Z. (2003). Efficient use of strong light for high photosynthetic productivity: interrelationships between the optical path, the optimal population density and cell-growth inhibition. Biomolecular Engineering.20: 229-236.

Prihantini, N.B., Winni R. & Wisnu W. (2007). Pengaruh Variasi Fotoperioditas terhadap pertumbuhan Chlorella dalam Medium Basal Bold. Biota.12(1): 32-39.

Cai, T., Stephen Y.P., Ratanachat R. & Yebo L. (2013). Cultivation of Nannochloropsis salina using anaerobic digestion effluent as a nutrient source for biofuel production. Applied Energy. 108: 486-492.

Chiu, S., Chien Y.K., Ming T.T., Seow C.O., Chiun H.C. & Shih S.L. (2009). Lipid acumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresource Technology. 100: 833-838.

Han, F., Jianke H., Yuanguang Li, Eiliang W., Minxi W., Guomin S. & Jun W. (2013). Enhanced lipid productivity of Chlorella pyrenoidosa through the culture strategy of semi-continuous cultivation with nitrogen limitation and pH control by CO2. Bioresource Technology. 136: 428-424.

Scherholz, M. L., & Curtis, W. R. (2013). Achieving pH control in microalgal cultures through fed-batch addition of stoichiometrically-balanced growth media. BMC biotechnology, 13(1), 39.

Chiu, S. Y., Kao, C. Y., Chen, C. H., Kuan, T. C., Ong, S. C., & Lin, C. S. (2008). Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource technology, 99(9), 3389-3396.

Fan, L. H., Zhang, Y. T., Zhang, L., & Chen, H. L. 2008. Evaluation of a membrane-sparged helical tubular photobioreactor for carbon dioxide biofixation by Chlorella vulgaris. Journal of Membrane Science, 325(1), 336-345.