Perbandingan Tingkat Kadar Gas SO2 dan NO2 di Udara Ambien Antara Metode Pasif dan Metode Aktif (Studi Kasus: Kota Jakarta)

Main Article Content

Asri Indrawati
Dyah Aries Tanti
Nani Cholianawati
Andi Sofyan
Waluyo EKo Cahyono

Abstract

ABSTRACT


A comparison of the measurement results between the active method and the passive method was carried out to see the correlation between the resulting concentrations. The passive method used CSIRO passive sampler, while the active method used the Air Quality Monitoring System (AQMS). Sampling was conducted at AQMS Bundaran HI Jakarta Station, belonging to the Environment Laboratory of DLH DKI Jakarta. The sampling period was February - April 2019 for SO2 and NO2 parameters, with a sampling duration of three days for each data. Data was proceed using the correlation method. Data filtering with boxplot was used to filter outlier data from the passive sampler and AQMS measurements. Meteorological factors were included in the correlation calculations because of their effect on gas absorption that occurred in the passive sampler. Meteorological factors used were temperature, humidity, and wind direction. The AQMS concentration value prediction was calculated using the correlation equation between the passive sampler and the AQMS. The results showed that the correlation coefficient value between the passive sampler and AQMS was 0.67 for SO2 and NO2 of 0.79. Multivariate correlation using meteorological data, to improve the correlation value, obtained correlation values of 0.97 for SO2 and 0.94 for NO2. The predictive value of AQMS used a regression equation, with an average bias value of 4.4% for SO2 and 9.9% for NO2, while the RMSE values were 0.89 for SO2 and 4.41 for NO2. The results showed that the concentration of SO2 and NO2 gas measurement results from the passive and active methods had a good and significant correlation.


Keywords: passive method, active method, SO2, NO2, AQMS


 


ABSTRAK


Perbandingan hasil pengukuran antara metode aktif dan metode pasif dilakukan untuk melihat korelasi konsentrasi yang dihasilkan antara metode aktif dan metode pasif. Metode pasif menggunakan passive sampler CSIRO, sedangkan metode aktif menggunakan Air Quality Monitoring System (AQMS). Sampling dilakukan di Stasiun Pemantauan Kualitas Udara (SPKU) DKI 1 Bundaran HI milik  Laboratorium Lingkungan Hidup DLH DKI Jakarta. Periode sampling dilakukan dari bulan Februari – April 2019 untuk parameter SO2 dan NO2, dengan durasi sampling per tiga hari untuk satu data. Pengolahan data dilakukan dengan metode korelasi. Filter data dilakukan dengan menggunakan boxplot untuk memfilter data outlier dari pengukuran passive sampler dan AQMS. Faktor meteorologi dimasukkan dalam perhitungan korelasi karena pengaruhnya pada penyerapan gas yang terjadi di passive sampler. Faktor meteorologi yang digunakan adalah temperatur, kelembapan, dan arah angin. Prediksi nilai konsentrasi AQMS dihitung dengan menggunakan persamaan korelasi antara passive sampler dengan AQMS. Hasil yang diperoleh menunjukkan nilai koefisien korelasi antara passive sampler dengan AQMS sebesar 0,67 untuk SO2 dan NO2 sebesar 0,79. Korelasi multivariat menggunakan data meteorologi untuk memperbaiki nilai korelasi diperoleh nilai korelasi 0,97 untuk SO2 dan 0,94 untuk NO2. Nilai prediksi AQMS menggunakan persamaan regresi, dengan nilai rata-rata bias 4,4% untuk SO2 dan 9,9% untuk NO2, sedangkan nilai RMSE sebesar 0,89 untuk SO2 dan 4,41 untuk NO2. Hasil penelitian menunjukkan bahwa konsentrasi hasil pengukuran gas SO2 dan NO2 metode pasif dan metode aktif mempunyai korelasi yang baik dan signifikan.


Kata kunci: metode pasif, metode aktif, SO2, NO2, AQMS

Article Details

Section
RESEARCH ARTICLES

References

Office of Teaching & Digital Learning. (2016). Exposure Assessment: Introduction to Basic Concepts, Air Monitoring. Boston University School of Public Health. Diakses pada tanggal 23 Oktober 2020 dari https://sphweb.bumc.bu.edu/otlt/mph-modules/exposureassessment/exposureassessment8.html.

Bari, M. A., Curran, R. L. T., & Kindzierski, W. B. (2015). Field performance evaluation of Maxxam passive samplers for regional monitoring of ambient SO2, NO2 and O3 concentrations in Alberta, Canada. Atmospheric Environment, 114, 39-47. doi:https://doi.org/10.1016/j.atmosenv.2015.05.031.

Leiva G, M. A., Gonzales, B., Vargas, D., Toro, R., & Morales S, R. G. E. (2013). Estimating the uncertainty in the atmospheric ammonia concentration in an urban area by Ogawa passive samplers. Microchemical Journal, 110, 340-349. doi:https://doi.org/10.1016/j.microc.2013.05.004

Salem, A. A., Soliman, A. A., & El-Haty, I. A. (2009). Determination of nitrogen dioxide, sulfur dioxide, ozone, and ammonia in ambient air using the passive sampling method associated with ion chromatographic and potentiometric analyses. Air Qual Atmos Health, 2(3), 133-145. doi:10.1007/s11869-009-0040-4

Mukerjee, S., Smith, L. A., Norris, G. A., Morandi, M. T., Gonzales, M., Noble, C. A., Neas, L. M., Ozkaynak, A. H. (2004). Field method comparison between passive air samplers and continuous monitors for Vocs and NO2 in El Paso, Texas. J Air Waste Manag Assoc, 54(3), 307-319. doi:10.1080/10473289.2004.10470903

Rosario, L., Pietro, M., & Francesco, S. P. (2016). Comparative Analyses of Urban Air Quality Monitoring Systems: Passive Sampling and Continuous Monitoring Stations. Energy Procedia, 101, 321-328. doi:https://doi.org/10.1016/j.egypro.2016.11.041

Krupa, S. V., & Legge, A. H. (2000). Passive sampling of ambient, gaseous air pollutants: an assessment from an ecological perspective. Environmental Pollution, 107(1), 31-45. doi:https://doi.org/10.1016/S0269-7491(99)00154-2

Indrawati, A., Tanti, D. Y., Mulyono, & Budiwati, T. (2017). Pengaruh Parameter Meteorologi Terhadap Deposisi Sulfur dan Nitrogen. Prosiding Seminar Nasional Sains Atmosfer – PSTA, LAPAN. 60 – 67.

Prabhandhari, D. (2014). Analisis Status Kualitas Udara Lima Koa Metropolitan di Indonesia. Tugas Akhir. Departemen Teknik Sipil dan Lingkungan Fakultas Teknologi Pertanian, Institut Pertanian Bogor.

Powell, J. (2007). Chemlab wet chemistry measurement, work instructional manual for NATA accredited laboratories, CMAR-NATA-WC-2.0.2nd Edition.

Adon, M., Galy-Lacaux, C., Yoboué, V., Delon, C., Lacaux, J. P., Castera, P., . . . Mougin, E. (2010). Long term measurements of sulfur dioxide, nitrogen dioxide, ammonia, nitric acid and ozone in Africa using passive samplers. Atmos. Chem. Phys., 10(15), 7467-7487. doi:10.5194/acp-10-7467-2010.

Campos, V. P., Cruz, L. P. S., Godoi, R. H. M., Godoi, A. F. L., & Tavares, T. M. (2010). Development and validation of passive samplers for atmospheric monitoring of SO2, NO2, O3 and H2S in tropical areas. Microchemical Journal, 96(1), 132-138. doi:https://doi.org/10.1016/j.microc.2010.02.015.

Indrawati A., Tanti, D. A., Sumaryati. (2019). Perhitungan Konsentrasi Nitrogen Oksida (NO, NOx) ambien dengan menggunakan konsentrasi NO2 dan O3 dari passive sampler (Studi kasus: Cipedes Bandung). Jurnal Sains Dirgantara, 16 (2), 91 – 104.

Horiba. (2009). APSA-370 Operation Manual. Diakses pada tanggal 29 Mei 2020 dari (https://www.horiba.com/fileadmin/uploads/Process-Environmental/Documents/Manuals_US/Ambient/APSA-370_Operation_manual_e.pdf.

Horiba. (2009). APNA-370 Operation Manual. Diakses pada tanggal 29 Mei 2020 dari https://www.horiba.com/fileadmin/uploads/Process-Environmental/Documents/Manuals_US/Ambient/APNA-370_Operation_manual_e.pdf.

Khuriganova, O. I., Obolkin, V. A., Golobokova, L. P., Bukin, Y. S., & Khodzher, T. V. (2019). Passive Sampling as a Low-Cost Method for Monitoring Air Pollutants in the Baikal Region (Eastern Siberia). Atmosphere, 10(8), 470.

Górecki, T., & Namie?nik, J. (2002). Passive sampling. TrAC Trends in Analytical Chemistry, 21(4), 276-291. doi:https://doi.org/10.1016/S0165-9936(02)00407-7.

Winardi. (2014). Pengaruh Suhu dan Kelembapan Terhadap Konsentrasi Pb di Udara Kota 67 Pontianak. Jurnal Penelitian dan Pengembangan Borneo Akcaya. 01(1), 17 – 22.

Hsu, Y.-M. (2013). Trends in Passively-Measured Ozone, Nitrogen Dioxide and Sulfur Dioxide Concentrations in the Athabasca Oil Sands Region of Alberta, Canada. Aerosol and Air Quality Research, 13(5), 1448-1463. doi:10.4209/aaqr.2012.08.0224.

National Institute for Occupational Safety and Health (NIOSH). (1994). NIOSH Manual of Analytical Methods, fourth ed. DHHS Publication 94-113, Atlanta, GA.

European Commission. (2008). Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Off. J. Eur. Union L 152, 1e44, 11.6.2008. http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri¼OJ:L:2008:152:0001:0044:EN:PDFclimate_normals/index_e.html.

Most read articles by the same author(s)