Pengaruh Laju Aliran Udara Terhadap Efisiensi Penyisihan Organik di dalam Air Lindi dengan Menggunakan Teknik Oksidasi Lanjut (O3/H2O2)

Main Article Content

Mohamad Rangga Sururi
M.A. Fadiyah
S.A. Saleh
Mila Dirgawati

Abstract

ABSTRACT


Leachate has complex characteristics, and it is commonly processed biologically in the Leachate Treatment Plant (IPL) in Indonesia. However, as the landfill ages, the leachate becomes less biodegradable. An appropriate technique is needed to treat leachate at IPL, and one of the promising methods is advanced oxidation with O3/H2O2. This study examined the effect of air flow rate on the concentration of residual ozone (KSO) and its efficiency to remove organic compounds using the O3/H2O2 process. Leachate samples were collected as grab samples from TPA Sarimukti Bandung. As much as 1 L of leachate samples were placed in an ozone contactor equipped with a filter disc with a pore size of 100-160 µm. The dose of H2O2 was continuously added to 1.197 g/L. Compressor was used to provide airflow with variations of 2, 3, and 4 L/min. Dissolved Oxygen (DO) was measured to determine the concentration of residual ozone (KSO) and validated by examining KSO measurements with the Indigo colorimetric method. A strong relationship between KSO and DO (R2 = 0.99) was observed at an airflow rate of 4 L/min. The highest ozone mass transfer coefficient (KLa,O3) was recorded at a 4 L/minute flow rate with 0.0022 min-1 at 27 °C.  The best removal efficiency has occurred at the fastest air flow rate (4 L/min) with COD, and UV254 removal was 88.89% and 14.87%, respectively.


Keywords: DO, flow variation, KSO, leachate, O3/H2O2, organic, mass transfer


 


ABSTRAK


Karakteristik lindi sangatlah kompleks dan di Indonesia, Instalasi Pengolahan Lindi (IPL) pada umumnya menggunakan sistem pengolahan biologis. Namun demikian, seiring dengan pertambahan umur urugan sampah, lindi semakin tidak biodegradable. Teknik pengolahan tepat diperlukan untuk mengolah lindi di IPL. Salah satu teknik yang sering digunakan adalah oksidasi lanjut dengan O3/H2O2 dengan mentransferkan gas ozon ke dalam air lindi yang diukur sebagai Konsentrasi Sisa Ozon (KSO) dan menambahkan H2O2 untuk meningkatkan pembentukan OH? di dalam air.  Penelitian ini bertujuan untuk mengetahui pengaruh laju aliran udara terhadap KSO serta pengaruhnya terhadap efisiensi penyisihan senyawa organik pada proses O3/H2O2. Sampel lindi diambil secara grab sampling dari TPA Sarimukti Bandung. Sebanyak 1 L sampel ditempatkan pada kontaktor ozon yang dilengkapi filter disc dengan pori berukuran 100-160µm. Dosis H2O2 yang diberikan tetap sebesar 1,197 g/L. Udara dialirkan dengan air compressor dengan variasi debit udara 2, 3, dan 4 L/menit. Pada penelitian ini, pengukuran Dissolved Oxygen (DO) digunakan sebagai pendekatan untuk mengukur KSO. Validasi dilakukan dengan meneliti hubungan antara KSO dan DO dan pengukuran KSO dilakukan dengan metode indigo colorimetric method.  Hasil penelitian menunjukkan KSO dan DO memiliki hubungan yang kuat (R2 = 0,99) pada variasi aliran udara 4 L/menit. Laju aliran udara tercepat terjadi ketika nilai koefisien transfer masa ozon (KLa,O3) mencapai nilai tertinggi (0,0022 menit-1) pada suhu 27 oC. Hasil penelitian membuktikan efisiensi penyisihan COD (88,89%) dan UV254 (14,87%) tertinggi terjadi pada laju aliran udara tercepat selama 180 menit.


Kata kunci: DO, aliran udara KSO, lindi, O3/H2O2, organik, transfer masa

Article Details

Section
RESEARCH ARTICLES

References

Renou, S., Givaudan, J., Poulain, S., Dirassouyan, F., & Moulin, P. (2008). Landfill leachate treatment: Review and opportunity. Journal of hazardous materials, 150(3), 468-493.

Damanhuri, E., & Padmi, T. (2010). Pengelolaan Sampah. Diktat Kuliah TL, 3104, 5-10.

Labiadh, L., Fernandes, A., Ciríaco, L., Pacheco, M. J., Gadri, A., Ammar, S., & Lopes, A. (2016). Electrochemical treatment of concentrate from reverse osmosis of sanitary landfill leachate. Journal of Environmental Management, 181, 515-521.

Hereher, M. E., Al-Awadhi, T., & Mansour, S. A. (2019). Assessment of the optimized sanitary landfill sites in Muscat, Oman. The Egyptian Journal of Remote Sensing and Space Science.

Bilgili, M. S., Demir, A., & Özkaya, B. (2007). Influence of leachate recirculation on aerobic and anaerobic decomposition of solid wastes. Journal of hazardous materials, 143(1-2), 177-183.

Cortez, S., Teixeira, P., Oliveira, R., & Mota, M. (2011). Evaluation of Fenton and ozone-based advanced oxidation processes as mature landfill leachate pre-treatments. Journal of Environmental Management, 92(3), 749-755.

Gliniak, M., Lis, A., Polek, D., & Wo?osiewicz-G??b, M. (2019). Advanced Oxidation Treatment of Composting Leachate of Food Solid Waste by Ozone-Hydrogen Peroxide. Journal of Ecological Engineering, 20(5).

Von Gunten, U. (2003). Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water research, 37(7), 1443-1467.

Wu, J. J., Wu, C.-C., Ma, H.-W., & Chang, C.-C. (2004). Treatment of landfill leachate by ozone-based advanced oxidation processes. Chemosphere, 54(7), 997-1003.

Tizaoui, C., Bouselmi, L., Mansouri, L., & Ghrabi, A. (2007). Landfill leachate treatment with ozone and ozone/hydrogen peroxide systems. Journal of hazardous materials, 140(1-2), 316-324.

DLH. (2020). Status Lingkungan Hidup Provinsi Jawa Barat. Bandung: Dinas Lingkungan Hidup Provinsi Jawa Barat.

Gelardiansyah, S. (2015). Kelarutan Ozon pada Proses Ozonisasi Konvensional dan Advanced Oxidation Process (O3/H2O2) pada Lindi Effluent Pengolahan. REKA LINGKUNGAN, 3(2).

APHA. (2005). Standard methods for the examination of water and wastewater. American Public Health Association (APHA): Washington, DC, USA.

USEPA, J. (1999). Alternative disinfectants and oxidants guidance manual. United States Environmental Protection Agency (USEPA).

Zhou, H., & Smith, D. W. (2000). Ozone mass transfer in water and wastewater treatment: experimental observations using a 2D laser particle dynamics analyzer. Water research, 34(3), 909-921.

Karamah, E. F., Bismo, S., Annasari, L., & Purwanto, W. W. (2010). Mass transfer study on micro-bubbles ozonation in a bubble column. International Journal of Chemical Engineering Research, 2, 243-252.

Acero, J. L., & Gunten, U. v. (2000). Influence of carbonate on the ozone/hydrogen peroxide based advanced oxidation process for drinking water treatment.

Beltran, F. J. (2003). Ozone reaction kinetics for water and wastewater systems: CRC Press.

Sawyer, C. N., & McCarty, P. L. (1978). Chemistry for environmental engineers. New York. Mc Graw-Hill Book Company.

Sururi, M. R., Roosmini, D., & Notodarmojo, S. (2018). Chromophoric and liability quantification of organic matters in the polluted rivers of Bandung watershed, Indonesia. Paper presented at the MATEC Web of Conferences.

Zhang, Y., Yin, Y., Feng, L., Zhu, G., Shi, Z., Liu, X., & Zhang, Y. (2011). Characterizing chromophoric dissolved organic matter in Lake Tianmuhu and its catchment basin using excitation-emission matrix fluorescence and parallel factor analysis. Water research, 45(16), 5110-5122.

Sotelo, J., Beltran, F., Benitez, F., & Beltran-Heredia, J. (1989). Henry's law constant for the ozone-water system. Water research, 23(10), 1239-1246.

Reynolds, T. D., & Richards, P. A. C. (1995). Unit operations and processes in environmental engineering: PWS Publishing Company.

Rezagama, A. (2012). Studi Ozonisasi Senyawa Organik Air Lindi Tempat Pemrosesan Akhir Sarimukti. Teknik, 34(2), 82-87.

Staehelin, J., Buehler, R., & Hoigné, J. (1984). Ozone decomposition in water studied by pulse radiolysis. 2. Hydroxyl and hydrogen tetroxide (HO4) as chain intermediates. The Journal of Physical Chemistry, 88(24), 5999-6004.

Frimmel, F.H. (2005), Aquatic humic substances. Biopolymers Online. Willey Online Library

Sururi, M. R., Siti, S. A., & Safria, O. P. (2016). Leachate Treatment Using Advanced Oxidation Process with Zeolite as a Catalyst. IPCB 2016, 139.

Chen, W., Luo, Y., Ran, G., & Li, Q. (2019). An investigation of refractory organics in membrane bioreactor effluent following the treatment of landfill leachate by the O3/H2O2 and MW/PS processes. Waste Management, 97, 1-9.

Glaze, W. H., Kang, J.-W., & Chapin, D. H. (1987). The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation.