Fluktuasi Cemaran Udara Partikulat dan Tingkat Risikonya terhadap Kesehatan Masyarakat Kota Bogor

Main Article Content

Iif Miftahul Ihsan
Moh. Yani
Rahmat Hidayat
Tetty Permatasari



Health risk characteristics expressed as a Risk Quotient (RQ) can be carried out through an environmental health risk analysis (ARKL) approach. This approach can estimate the public health risk caused by the concentration of risk agents of particulates consisting of PM2.5, PM10, and TSP. The research on the fluctuation of ambient air particulate pollutant and its risk to public health was conducted in each sub-district of Bogor City. Author identified a total of 360 respondents to determine the community anthropometric variable of exposures for time, frequency, and duration. There are several steps that need to be carried out to obtain the RQ value, namely identification of hazards from particulate risk agents, analysis of the dose-response in the form of Reference Concentration (RFC), analysis of the exposure obtained based on anthropometric variables, and the concentration of risk agents as well as characteristics of risk levels. The risk level characteristic shows that the RQ value of TSP is always the highest one, followed by PM10 and PM2.5. The respective RQ values of TSP for male and female residents are 1.85 and 1.53. Cumulatively, the male and female population in Tanah Sareal produced the highest RQ values. Those are 4.44 and 3.36, respectively. At the same time, the lowest cumulative RQ was obtained for male and female residents in East Bogor with RQ values of 2.96 and 2.54. The RQ value of each risk agent or the cumulative RQ that is more than 1 (RQ> 1) is stated to have or has a health risk, so it needs to be controlled, while the RQ value which is less than one (1) is displayed not to need to be controlled but needs to be maintained.

Keywords: particulate, risk level, exposure assessment, anthropometric characteristic, environmental health risk assessment



Karakteristik risiko kesehatan yang dinyatakan sebagai Risk Quotient (RQ) dapat dilakukan melalui pendekatan Analisis Risiko Kesehatan Lingkungan (ARKL). Pendekatan ini dapat mengestimasi risiko kesehatan masyarakat yang disebabkan oleh konsentrasi agen risiko yaitu PM2,5, PM10, dan TSP di tiap-tiap kecamatan di Kota Bogor. Penulis mengidentifikasi sebanyak 360 responden yang terdiri dari laki-laki dan perempuan untuk menentukan variabel antropometri masyarakat di Kota Bogor, waktu paparan, frekuensi paparan, serta durasi paparan. Ada beberapa tahapan yang perlu dilakukan untuk memperoleh nilai RQ, yaitu identifikasi bahaya dari agen risiko partikulat, analisis dosis-respon berupa Reference Concentration (RfC), analisis pajanan yang diperoleh berdasarkan variabel antropometri dan konsentrasi agen risiko serta karakteristik tingkat risiko. Karakteristik tingkat risiko menunjukkan nilai RQ TSP selalu paling tinggi diikuti PM10, dan terendah adalah RQ PM2,5 dengan nilai tertinggi TSP untuk penduduk laki-laki dan perempuan masing-masing sebesar 1,85 dan 1,53. Secara kumulatif, penduduk laki-laki dan perempuan di Tanah Sareal menghasilkan nilai RQ tertinggi masing-masing sebesar 4,44 dan 3,36. Sedangkan RQ kumulatif terendah diperoleh untuk penduduk laki-laki dan perempuan di Bogor Timur dengan nilai RQ 2,96 dan 2,54. Nilai RQ tiap agen risiko ataupun RQ kumulatif yang lebih dari 1 (RQ>1) dinyatakan memiliki atau terdapat risiko kesehatan sehingga perlu dikendalikan, sementara nilai RQ yang masing kurang dari satu dinyatakan tidak perlu dikendalikan tetapi perlu dipertahankan.

Kata kunci: partikulat, tingkat risiko, analisis pajanan, karakteristik antropometri, analisis risiko kesehatan lingkungan

Article Details



[BPS] Badan Pusat Statistik Kota Bogor. (2019). Statistik Daerah Kota Bogor 2019. Bogor (ID): Badan Pusat Statistik.

[BPS] Badan Pusat Statistik Provinsi Jawa Barat. (2016). Provinsi Jawa Barat Dalam Angka 2016. Bandung (ID): Badan Pusat Statistik.

[BPS] Badan Pusat Statistik Kota Bogor. (2018). Kota Bogor Dalam Angka 2018. Bogor (ID): Badan Pusat Statistik.

Sarudji, D. (2010). Kesehatan Lingkungan. Bandung (ID): CV Karya Putra.

Johnson, T.M., Guttikunda, S., Wells, G.J., Artaxo, P., Bond, T.C., Russell, A.G., Watson, J.C., & West J. (2011). Tools for Improving Air Quality Management : A review of Top-down Source Apportionment Techniques and Their Application in Developing Countries. Washington (US): Energy Sector Management Assistance Program

Abiye, O.E., Obioh, I.B., & Ezeh, G.C. (2013). Elemental characterization of urban particulates at receptor locations in Abuja, North Central Nigeria. ATM. Env. 81, 695-701.

Xing, Y.F., Xu, Y.H., Shi, M.H., & Lian, Y.X. (2016). The Impact of PM2,5 on the human respiratory system. Journal of Thoracic Disease 8(1), 69-74

Onabowale, M.K., & Owoade O.K. (2015). Assessment residential indoor outdoor airborne particulate matter in Ibadan, Southwestern Nigeria. Donnish J. Physical. Sci. 1(1), 001 – 007.

[COMEAP] Committee on the Medical Effects of Air Pollutants. (2009). Long-Term Exposure to Air Pollution: Effect on mortality. A report by the Committee on the Medical Effects of Air Pollutants. England (UK): Health Protection Agency

[AQEG] Air Quality Expert Group. (2012). Fine Particulate Matter (PM2,5) in the United Kingdom. London (UK): Defra.

[DEFRA] Department for Environment Food and Rural Affairs. (2012). Air Quality: Public Health Impacts and Local Actions. London (UK): Defra.

Tan-Soo, J., & Pattanayak, S.K. (2019). Seeking Natural Capital Projects: Forest Fires, Haze, and Early-Life Exposure in Indonesia. Proceedings of the National Academy of Sciences of the United States of America 116(12), 5239-5245

Field, R.D., van der Werf, G.R., & Shen, S.S.P. (2009). Human amplification of drought-induced biomass burning in Indonesia since 1960. Nat. Geosci. 2,185–188..

Han, S., Bian, H., Zhang, Y., Wu, J., Wang, Y., Tie, X., Li, Y., Li, X., & Yao, Q. (2012). Effect of aerosols on visibility and radiation in spring 2009 in Tianjin, China. Aerosol Air Qual. Res. 12, 211–217.

Langridge, J.M., Lack, D., Brock, C.A., Bahreini, R., Middlebrook, A.M., Neuman, J.A., Nowak, J.B., Perring, A.E., Schwarz, J.P., Spackman, J.R., & Holloway, J.S. (2012). Evolution of aerosol properties impacting visibility and direct climate forcing in an ammonia­rich urban environment. J. Geophys. Res. 117, 1-17.

Kusumaningtyas, S.D.A., & Aldrian, E. (2016). Impact of the June 2013 Riau province Sumatera smoke haze event on regional air pollution. Environ. Res. Lett. 11(7), 1-11.

Lavy, V., Ebenstein, A., & Roth, S. (2014). The impact of short term exposure to ambient air pollution on cognitive performance and human capital formation. NBER Working Paper.

Pun, V.C., Manjouride, J., & Suh H. (2017). Association of ambient air pollution with depressive and anxiety symptoms in older adults: results from the NSHAP study. Environmental Health Perspectives 125, 342-348.

Nurhasanah I. (2019). Pengaruh Faktor Meteorologi Dan Jumlah Kendaraan Bermotor Terhadap Konsentrasi Partikulat (Studi Kasus : Kampus IPB Baranangsiang) [skripsi]. Bogor (ID): Institut Pertanian Bogor.

PT Sky Pacific Indonesia. (2020). Laporan Pengujian dan Analisa Kualitas Udara Ambien Musim Penghujan Kota Bogor Provinsi Jawa Barat Semester 1 Tahun 2020. Bogor (ID): PT Sky Pacific Indonesia

Kementrian Kesehatan. (2012). Pedoman Analisis Risiko Kesehatan Lingkungan. Jakarta (ID): Kementrian Kesehatan Republik Indonesia

Rahman, A., Nukman, A., Setyadi., Akib, C.R., Sofwan, & Jarot. (2008). Analisis risiko kesehatan lingkungan pertambangan kapur di Sukabumi, Cirebon, Tegal dan Tulung Agung. Jurnal Ekologi Kesehatan 7(1), 665-677.

[EPA] Environmental Protection Agency. (1990). National Ambient Air Quality Standars (NAAQS). Washington (US): U.S. Environmental Protection Agency

Petters, A., Skorkovsky, J., Kotesovec, F., Brynda, J., Spix, C., Wichman, H.E., & Heinrich J. (2000). Association between mortality and air pollution in Central Europe. Environmental Health Perspective 108(4), 283-287.

Basri, S., Bujawati, E., Amansyah, M., Habibi, & Samsiana. (2014). Analisis risiko kesehatan lingkungan (model pengukuran risiko pencemaran udara terhadap kesehatan). Jurnal Kesehatan 7(2), 427-442

Siswati, & Diyanah, K.C. (2017). Analisis risiko pajanan debu (Total Suspended Particulate) di Unit Packer PT.X. Jurnal Kesehatan Lingkungan 9(1), 100-110.

Djafri, D. (2014). Prinsip dan metode analisis risiko kesehatan lingkungan. Jurnal Kesehatan Masyarakat Andalas. 8(2), 100-104

[USEPA] U.S Environmental Protection Agency. (1992). Guidline for Exposure Assessment. Washington (US): Risk Assessment Forum U.S. Environmental Protection Agency

[USEPA] U.S Environmental Protection Agency. (2009). Metabolically derived human ventilation rates: a revised approach based upon oxygen consumption rates (final report). Washington (WA): US Environmental Protection Agency.

Nukman, A., Rahman, A., Warouw, S., Setiadi, M.I., & Akib, C.R. (2005). Analisis dan manajemen risiko kesehatan pencemaran udara: studi kasus di sembilan kota besar padat transportasi. Jurnal Ekologi Kesehatan 4(2), 270-289.

Brochu, P., Ducré-Robitaille, J.F., & Brodeur, J. (2006). Physiological daily inhalation rates for free-living individuals aged 1 month to 96 years, using data from doubly labeled water measurements: A proposal for air quality criteria, standard calculations and health risk assessment. Hum Ecol Risk Assess 12, 675­701.

Rahmadani, & Tualeka, A.R. (2016). Karakteristik risiko kesehatan akibat paparan polutan udara pada pekerja sol sepatu (di sekitar jalan raya bubutan kota Surabaya). Jurnal Kesehatan Lingkungan 8(2), 164-171

Dominelli, P.B., Molgat-Seon, Y., Bingham, D., Swartz, P.M., Road, J.D., Foster, G.E., & Sheel, A.W. (2015). Dysanapsis and the resistive work of breathing during exercise in healthy men and women. J Appl Physiol. 119, 1105–1113

Quanjer, P.H., Brazzale, D.J., Boros, P.W., & Pretto, J.J. (2012). Implications of adopting the Global Lungs Initiative 2012 all-age reference equations for spirometry. Eur Respir J. 42, 1046–1054.

Quanjer, P.H., Hall, G.L., Stanojevic, S., Cole, T.J., & Stocks, J. (2012). Age-and height-based prediction bias in spirometry reference equations. Eur Respir J. 40, 190–197

Schwartz, J., Katz, S.A., Fegley, R.W., & Tockman, M.S. (1988). Sex and race differences in the development of lung function. Am Rev Respir Dis. 138, 1415–1421.

Brooks, L.J., Byard, P.J., Helms, R.C., Fouke, J.M., & Strohl, K.P. (1988). Relationship between lung volume and tracheal area as assessed by acoustic reflection. J Appl Physiol. 64, 1050–1054

Brooks, L.J., Strohl, K.P. (1992). Size and mechanical properties of the pharynx in healthy men and women. Am Rev Respir Dis.146, 1394–1397

García-Martínez, D., Torres-Tamayo, N., Torres-Sanchez, I., Garcia-Rio, F., & Bastir, M. (2016). Morphological and functional implications of sexual dimorphism in the human skeletal thorax. Am J Phys Anthropol. 161, 467–477

Bastir, M., Godoy, P., & Rosas, A. (2011). Common features of sexual dimorphism in the cranial airways of different human populations. Am J Phys Anthropol. 146, 414–42