Life Cycle Assessment (LCA) Pengelolaan Sampah di TPA Gunung Panggung Kabupaten Tuban, Jawa Timur
Main Article Content
Abstract
ABSTRACT
The primary municipal waste treatment in Tuban Regency, East Java, was landfilling, besides the small amount of the waste was turned to compost. Landfilling causes global warming, which leads to climate change due to CH4 emission. This environmental impact could be worst by the population growth that increases the amount of waste. This study aimed to evaluate the environmental impact on waste management in the Gunung Panggung landfill in Tuban Regency and its alternative scenarios using Life Cycle Assessment (LCA). Four scenarios were used in this study. They are one existing scenario and three alternative scenarios comprising landfilling, composting, and anaerobic digestion. The scope of this study includes waste transportation to waste treatment which is landfilling, composting, and anaerobic digestion (AD). The functional unit of this analysis is per ton per year of treated waste. Environmental impacts selected are global warming potential, acidification potential, and eutrophication potential. The existing waste management in Gunung Panggung landfill showed the higher global warming potential because of the emission of CO2 and cost for human health, which is 6.379.506,17 CO2 eq/year and 5,92 DALY, respectively. Scenario 3 (landfilling, composting, and AD; waste sortation 70%) showed a lower environmental impact than others, but improvements were still needed. Covering compost pile or controlling compost turning frequency was proposed for scenario 3 amendment.
Keywords: environmental impact, landfill, life cycle assessment, waste management
ABSTRAK
Landfill merupakan pengelolaan sampah utama di tempat pemrosesan akhir (TPA) Gunung Panggung Kabupaten Tuban. Selain landfill, pengomposan diterapkan untuk mengolah sebagian kecil sampahnya. Landfill menghasilkan gas metana yang menyebabkan pemanasan global dan memicu perubahan iklim. Pertambahan penduduk memperbanyak sampah yang perlu diolah di TPA dan dapat memperparah dampak lingkungan yang ditimbulkan. Tujuan penelitian ini adalah menilai dampak lingkungan dari pengelolaan sampah eksisting di TPA Gunung Panggung Kabupaten Tuban Jawa Timur beserta skenario alternatifnya menggunakan Life Cycle Assessment (LCA). Terdapat satu skenario eksisting dan tiga skenario alternatif pengelolaan sampah yaitu landfilling, pengomposan, dan fermentasi anaerob (anaerobic digestion). Ruang lingkup studi meliputi pengangkutan sampah, pengelolaan sampah dengan cara pengomposan, Anaerobic Digestion (AD), dan landfill. Satuan fungsional yang digunakan yakni ton sampah yang diolah per tahun. Dampak lingkungan yang dipelajari di antaranya: pemanasan global, asidifikasi, dan eutrofikasi. Dampak lingkungan skenario eksisting menunjukkan nilai tertinggi terutama pada pemanasan global (6.379.506,17 CO2eq/tahun) dan kerugian pada kesehatan manusia (5,92 DALY). Skenario alternatif 3, yang meliputi pengelolaan secara landfill, pengomposan, dan AD menunjukkan dampak lingkungan yang kecil, namun memerlukan perbaikan. Perbaikan untuk skenario 3 yaitu dengan menambahkan penutup pada tumpukan kompos atau mengontrol frekuensi pembalikan kompos untuk mengurangi emisi NH3.
Kata kunci: dampak lingkungan, life cycle assessment, pengelolaan sampah, tempat pemrosesan akhir
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
JTL provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.
JTL by PTL-BPPT is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Permissions beyond the scope of this license may be available at http://ejurnal.bppt.go.id/index.php/JTL
References
Badan Pusat Statistik. (2019). Kabupaten Tuban dalam Angka 2019. In Tuban: BPS Kabupaten Tuban.
Gaol, M. L., & Warmadewanthi, I. D. A. A. (2017). Prediksi dampak lingkungan pengelolaan sampah di TPA Jabom, Kabupaten Sidoarjo. Jurnal Teknik ITS, 6(2), 2–7.
Hapsari, D. S. A., & Herumurti, W. (2017). Laju timbulan dan komposisi sampah rumah tangga di Kecamatan Sukolilo Surabaya. Jurnal Teknik ITS, 6(2), C421–C424.
Intergovernmental Panel on Climate Change. (2006). Guidelines for National Greenhouse Gas Inventories. Volume 5. Waste. Retrieved January 27, 2021, from https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol5.html
Kiswandayani, A. V., Susanawati, L. D., & Wirosoedarmo, R. (2016). Komposisi sampah dan potensi emisi gas rumah kaca pada pengelolaan sampah domestik: Studi kasus TPA Winongo Kota Madiun. Jurnal Sumberdaya Alam dan Lingkungan, 2(3), 9–17.
Chaerul, M., Dirgantara, G. G., & Akib, R. (2016). Prediction of greenhouse gasses emission from municipal solid waste sector in Kendari City, Indonesia. Jurnal Manusia Dan Lingkungan, 23(1), 42–48. https://doi.org/https://doi.org/10.22146/jml.18772
Marendra, F., Rahmada, A., Prasetya, A., Cahyono, R. B., & Ariyanto, T. (2018). Kajian dampak lingkungan pada sistem produksi listrik dari limbah buah menggunakan life cycle assessment. Jurnal Rekayasa Proses, 12(2), 85–97. https://doi.org/10.22146/jrekpros.36425
Baumann, H., & Tillman, A. M. (2004). The hitch hiker’s guide to LCA: an orientation in life cycle assessment methodology and application.
International Organization of Standardization. (1997). ISO 14040:2006 Environmental management — Life cycle assessment — Principles and framework.
Cherubini, F., Bargigli, S., & Ulgiati, S. (2009). Life cycle assessment (LCA) of waste management strategies: landfilling, sorting plant and incineration. Energy, 34(12), 2116–2123. https://doi.org/10.1016/j.energy.2008.08.023
Lima, P. D. M., Olivo, F., Paulo, P. L., Schalch, V., & Cimpan, C. (2019). Life cycle assessment of prospective MSW management based on integrated management planning in Campo Grande, Brazil. Waste Management, 90, 59–71. https://doi.org/10.1016/j.wasman.2019.04.035
Gunamantha, M., Fandeli, C., Tandjung, S. D., & Sarto. (2010). Life cycle assessment pilihan pengelolaan sampah: studi kasus wilayah Kartamantul Provinsi D.I. Yogyakarta. Jurnal Manusia Dan Lingkungan, 17(2), 78–88. https://doi.org/10.22146/jml.18706
Khandelwal, H., Thalla, A. K., Kumar, S., & Rakesh, K. (2019). Life cycle assessment of municipal solid waste management options for India. Bioresource Technology, 288(March), 121515. https://doi.org/10.1016/j.biortech.2019.121515
Tchobanoglous, G., & Kreith, F. (2002). Handbook of Solid Waste Management (2nd Edition). McGraw-Hill. https://doi.org/10.1036/0071356231
Wilkie, A. C. (2005). Anaerobic digestion: biology and benefits. Dairy Manure Management: Treatment, Handling, and Community Relations, 63–72.
Ghaderpour, O., Rafiee, S., Sharifi, M., & Mousavi-Avval, S. H. (2018). Quantifying the environmental impacts of alfalfa production in different farming systems. Sustainable Energy Technologies and Assessments, 27(April 2017), 109–118. https://doi.org/10.1016/j.seta.2018.04.002
Badan Pusat Statistik. (2010). Pedoman Penghitungan Proyeksi Penduduk dan Angkatan Kerja. In Jakarta: Badan Pusat Statistik.
Dinas Lingkungan Hidup. (2018). Dokumen Hasil Survei Laju Timbulan Sampah, SRT dan SSRT, Komposisi, serta Potensi Daur Ulang di Kabupaten Tuban.
Anggun, T. Y., & Munawar, A. (2014). Analisis sistem transportasi sampah Kota Tuban menggunakan dynamic programming. Envirotek: Jurnal Ilmiah Teknik Lingkungan, 6(1), 45–52. Retrieved from http://eprints.upnjatim.ac.id/6822/
Xu, C., Shi, W., Hong, J., Zhang, F., & Chen, W. (2015). Life cycle assessment of food waste-based biogas generation. Renewable and Sustainable Energy Reviews, Vol. 49, pp. 169–177. Elsevier Ltd. https://doi.org/10.1016/j.rser.2015.04.164
Zhang, R., El-Mashad, H. M., Hartman, K., Wang, F., Liu, G., Choate, C., & Gamble, P. (2007). Characterization of food waste as feedstock for anaerobic digestion. Bioresource Technology, 98(4), 929–935. https://doi.org/10.1016/j.biortech.2006.02.039
McDougall, F. R., White, P. R., Franke, M., & Hindle, P. (2001). Integrated solid waste management: a life cycle inventory. Second edition. In Blackwell Science. Wiley. https://doi.org/10.1002/9780470999677
Intergovernmental Panel on Climate Change. (2006). Guidelines for National Greenhouse Gas Inventories. Volume 2. Energy. Retrieved January 27, 2021, from https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol2.html
Börjesson, P., & Berglund, M. (2006). Environmental systems analysis of biogas systems - Part I: Fuel-cycle emissions. Biomass and Bioenergy, 30(5), 469–485. https://doi.org/10.1016/j.biombioe.2005.11.014
Menikpura, S. N. M., Gheewala, S. H., & Bonnet, S. (2012). Sustainability assessment of municipal solid waste management in Sri Lanka: problems and prospects. Journal of Material Cycles and Waste Management, 14(3), 181–192. https://doi.org/10.1007/s10163-012-0055-z
Andersen, J. K., Boldrin, A., Christensen, T. H., & Scheutz, C. (2010). Mass balances and life-cycle inventory for a garden waste windrow composting plant (Aarhus, Denmark). Waste Management and Research, 28(11), 1010–1020. https://doi.org/10.1177/0734242X10360216
Kementerian Energi dan Sumber Daya Mineral. (2016). Surat Penyampaian Faktor Emisi GRK Sub Sektor Ketenagalistrikan. http://jcm.ekon.go.id/en/uploads/files/Document%20JCM/Reference/Surat_Penyampaian_Faktor_Emisi_GRK_Subsektor_Ketenagalistrikan.pdf
Diaz, R., & Warith, M. (2006). Life-cycle assessment of municipal solid wastes: Development of the WASTED model. Waste Management, 26(8), 886–901. https://doi.org/10.1016/j.wasman.2005.05.007
Bare, J. C., Hofstetter, P., Pennington, D. W., & Udo de Haes, H. A. (2000). Life cycle impact assessment workshop summary. Midpoints versus endpoints: the sacrifices and benefits. International Journal of Life Cycle Assessment, 5(6), 319–326. https://doi.org/10.1007/BF02978665
Huijbregts, M. A. J., Steinmann, Z. J. N., Elshout, P. M. F. M., Stam, G., Verones, F., Vieira, M. D. M., van Zelm, R. (2016). ReCiPe 2016. In National Institute for Public Health and the Environment. Retrieved from https://www.rivm.nl/bibliotheek/rapporten/2016-0104.pdf
Goedkoop, M., & Spriensma, R. (2000). The Eco-indicator 99. A damage-oriented method for life cycle impact assessment. Methodology Report (Vol. 3). https://doi.org/10.3370/lca.3.32
Hao, X., & Benke, M. B. (2008). Nitrogen transformation and losses during composting and mitigation strategies. Dynamic Soil, Dynamic Plant, 2(1), 10–18.
Strandroff, H. K., Hoffmann, L., Schmidt, A., & Technology, F. (2005). Impact categories, normalization and weighting in LCA. In Danish Ministry of The Environment. Environmental Protection Agency. (Vol. 78).
Ogunwande, G. A., Ogunjimi, L. A. O., & Fafiyebi, J. O. (2008). Effects of turning frequency on composting of chicken litter in turned windrow piles. International Agrophysics, 22(2), 159–165.
Parkinson, R., Gibbs, P., Burchett, S., & Misselbrook, T. (2004). Effect of turning regime and seasonal weather conditions on nitrogen and phosphorus losses during aerobic composting of cattle manure. Bioresource Technology, 91(2), 171–178. https://doi.org/10.1016/S0960-8524(03)00174-3
Tiquia, S. M., Tam, N. F. Y., & Hodgkiss, I. J. (1997). Effects of turning frequency on composting of spent pig-manure sawdust litter. Bioresource Technology, 62, 37–42.
Quirós, R., Villalba, G., Muñoz, P., Colón, J., Font, X., & Gabarrell, X. (2014). Environmental assessment of two home composts with high and low gaseous emissions of the composting process. Resources, Conservation and Recycling, 90, 9–20. https://doi.org/10.1016/j.resconrec.2014.05.008
Duarsa, A. B. S. (2008). Dampak pemanasan global terhadap risiko terjadinya malaria. Jurnal Kesehatan Masyarakat Andalas, 2(2), 181. https://doi.org/10.24893/jkma.2.2.181-185.2008
Setiawan, F., Muttaqin, A., Tarigan, S., Muhidin, M., Hotmariyah, M., Sabil, A., & Pinkan, J. (2017). Pemutihan karang akibat pemanasan global tahun 2016 terhadap ekosistem terumbu karang: studi kasus di TWP Gili Matra (Gili Air, Gili Meno, dan Gili Trawangan) Provinsi NTB. Journal of Fisheries and Marine Research, 1(2), 39–54. https://doi.org/10.21776/ub.jfmr.2017.001.02.1
Azevedo, L. B., Van Zelm, R., Hendriks, A. J., Bobbink, R., & Huijbregts, M. A. J. (2013). Global assessment of the effects of terrestrial acidification on plant species richness. Environmental Pollution, 174, 10–15. https://doi.org/10.1016/j.envpol.2012.11.001
Alfionita, A. N. A., Patang, P., & Kaseng, E. S. (2019). Pengaruh eutrofikasi terhadap kualitas air di Sungai Jeneberang. Jurnal Pendidikan Teknologi Pertanian, 5(1), 9–23. https://doi.org/10.26858/jptp.v5i1.8190
Bouraï, L., Logez, M., Laplace-Treyture, C., & Argillier, C. (2020). How do eutrophication and temperature interact to shape the community structures of phytoplankton and fish in lakes? Water, 12(3). https://doi.org/10.3390/w12030779
De Schryver, A. M. (2011). Value choices in life cycle impact assessment. Retrieved from http://www.ru.nl/publish/pages/556452/2010deschryver_phdthesis_11jan2011.pdf