Kajian Potensi Air Tanah pada Formasi Vulkanik di Kecamatan Prambanan, Kabupaten Klaten, Jawa Tengah Study of Groundwater Potential in Volcanic Formation in Prambanan District, Klaten Regency, Central Java

Main Article Content

Erik Febriarta
Septian Vienastra
Gilang Arya Dipayana
Zulfahmi Sitompul
Ajeng Larasati

Abstract

The presence of groundwater in volcanic rock formations is generally found in aquifer lithology in the form of loose deposits. The groundwater potential can be obtained by using the resistivity data approach. The purpose of this study was to determine the potential of aquifer parameters in volcanic formations on the middle slope of Mount Merapi in Prambanan District, Klaten Regency. The characteristics and thickness of the aquifer lithology can be determined by using the resistivity data approach which is correlated with rock material. Potential groundwater aquifer parameters were obtained from pump test measurements to determine the value of transmitivity (T) and value of permeability (K). The resistivity value is measured with a value range of 3 –75 ohm m which is interpreted by the aquifer lithology of loose material in the form of sand with fine to coarse grain sizes. The average thickness of the aquifer lithology is 80 m with free aquifer properties. Potential aquifer parameters in the form of transmitivity (T) of 330.6 m2/day and the value of permeability  (K) of 8.03 m/day with an average aquifer thickness of 10 m. This value belongs to the category of high aquifer productivity potential.


Keywords: Aquifers, Discharge, Groundwater, Permeability, Resistivity, Transmissivity


 


Abstrak


Keterdapatan air tanah pada formasi vulkanik secara umum terdapat di litologi akuifer berupa endapan lepas-lepas. Potensi air tanah tersebut dapat diperoleh dengan pendekatan data resistivitas. Tujuan dari penelitian ini adalah mengetahu potensi parameter akuifer pada formasi vulkanik di lereng tengah Gunung Merapi di Kecamatan Prambanan, Kabupaten Klaten. Untuk mengetahui karakteristik dan tebal litologi akuifer menggunakan pendekatan data resistivitas yang dikorelasikan dengan material batuan. Potensi parameter akuifer air tanah diperoleh dari pengukuran uji pompa untuk mengetahui Nilai transmisivitas/keterusan (T) dan nilai permeabilitas/kelulusan (K). Nilai resistivitas terukur dengan rentang nilai 35–75 ohm m yang diinterpretasikan dengan litologi akuifer material lepas-lepas berupa pasir dengan ukuran butir halus hingga kasar. Ketebalan rata-rata litologi akuifer sebesar 80 m dengan sifat akuifer bebas. Potensi parameter akuifer berupa nilai transmisivitas/keterusan (T) sebesar 330,6 m2/hari dan nilai permeabilitas/kelulusan (K) sebesar 8,03 m/hari dengan ketebalan akuifer rata-rata 10 m. Nilai tersebut termasuk pada katagori potensi produktivitas akuifer tinggi.


Kata kunci: Air tanah, Akuifer, Permeabilitas, Resistivitas, Transmisivitas

Article Details

Section
RESEARCH ARTICLES

References

Acworth, I. (2019). Investigating Groundwater. CRC Taylor & Francis Group.

Badan Standardisasi Nasional (BSN). (2005). Penyelidikan potensi air tanah skala 1?: 100 . 000 atau lebih besar SNI 13-7121-2005. Badan Standardisasi Nasional (BSN).

Bourdet, D. (2002). Well Test Analysis: The Use of Advanced Interpretation Models. Elsevier.

Bouwer, H., & Rice, R. C. (1976). A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resources Research, 12(1), 423–428.

BSN. (2005). Standar Nasional Indonesia (SNI) no.13-1712-2005 tentang penyelidikan potensi air tanah skala 1:100.000 atau lebih besar. Badan Standardisasi Nasional (BSN).

BSN. (2012). Standar Nasional Indonesia (SNI) 2018:2012 Tata Cara Pengukuran Geolistrik Schlumberger Untuk Eksplorasi Air Tanah. Badan Standarisasi Nasional (BSN). http://sni.litbang.pu.go.id/image/sni/isi/sni-28182012.pdf.

Febriarta, E., & Larasati, A. (2020). Karakteristik Akuifer Air Tanah Dangkal Di Endapan Muda Merapi Yogyakarta. Jurnal Sains Dan Teknologi Lingkungan, 12(2), 84–99. https://doi.org/https://doi.org/10.20885/jstl.vol12.iss2.art1.

Febriarta, E., & Purnama, S. (2020). Identifikasi Keterdapatan Airtanah Dengan Electromagnetic Very Low Frequency ( EM-VLF ) di Non Cekungan Airtanah Kecamatan Ungaran Timur. Jurnal Geosains Dan Teknologi, 3(2), 52–62. https://doi.org/https://doi.org/10.14710/jgt.3.2.2020.52-62.

Febriarta, E., & Shofarini, D. I. (2021). Penilaian Zona Kerentanan Air Tanah Terhadap Pencemaran dengan Metode SINTACS di Ranai (Pulau Bunguran). Jurnal Wilayah Dan Lingkungan, 9(1), 34–49. https://doi.org/10.14710/jwl.9.1.34-49.

Febriarta, E., Suswanti, S., & Noviandaru, S. (2020). Interpretasi Electrical Resistivity Tomography (ERT) untuk Pendugaan Air Tanah Dangkal pada Formasi Gunungapi Muda. Jurnal Nasional Teknologi Terapan (JNTT), 3(1), 49. https://doi.org/10.22146/jntt.56617.

Fetter, C. W. (2014). Applied Hydrogeology. Pearson New Internasional Edition.

Foppen, J. W., Lutterodt, G., Rau, G. C., & Minkah, O. (2020). Groundwater flow system analysis in the regolith of Dodowa on the Accra Plains, Ghana. Journal of Hydrology: Regional Studies, 28, 100663. https://doi.org/10.1016/j.ejrh.2020.100663.

Lowrie, & William. (2007). Fundamental of Geophysics. Cambridge University Press.

Lu, Y., Xu, H., Wang, Y., & Yang, Y. (2017). Evaluation of water environmental carrying capacity of city in Huaihe River Basin based on the AHP method: A case in Huai’an City. Water Resources and Industry, 18(October), 71–77. https://doi.org/10.1016/j.wri.2017.10.001.

Mepaiyeda, S., Madi, K., Gwavava, O., & Baiyegunhi, C. (2020). Geological and geophysical assessment of groundwater contamination at the Roundhill landfill site, Berlin, Eastern Cape, South Africa. Heliyon, 6(7), e04249. https://doi.org/10.1016/j.heliyon.2020.e04249.

Milsom. (2003). Field Geophysics, The Geological Field Guide Series (3rd ed.). West Sussex: John Wiley & Sons.

Mimikou, M., Baltas, E. A., & Tsihrintzis, V. . (2018). Hydrology and Water Resource System Analysis. CRC Press.

PATGTL. (2015a). Litologi Akuifer. Pusat Air Tanah dan Geologi Tata Lingkungan Kementerian Energi dan Sumber Daya Mineral. https://geoportal.esdm.go.id/geologi.

PATGTL. (2015b). Produktivitas Akuifer. Pusat Air Tanah dan Geologi Tata Lingkungan Kementerian Energi dan Sumber Daya Mineral. https://geoportal.esdm.go.id/geologi/.

PATGTL. (2018). Cekungan Air Tanah (CAT). Pusat Air Tanah dan Geologi Tata Lingkungan, Kementerian Energi dan Sumber Daya Mineral. https://geoportal.esdm.go.id/geologi/.

PSG. (2018). Geologi (ESDM (ed.)). Pusat Survei Geologi, Pemutakhiran Peta Potensi Energi Baru Terbarukan, Badan Geologi Kementerian Energi dan Sumber Daya Mineral.

Rathinasamy, M., Chandramouli, S., Phanindra, K. B. V. N., & Mahesh. (2019). Water Resource and Enviromental Enginering I: Surface and Groundwater. Springer.

Sharp, J. M. (2007). A Glossary of Hydrogeological Term. Department of Geological Sciences The University of Texas.

Singhal, B. B. ., & Gupta, R. (2010). Applied Hydogeology of Fracture Rock. Springer Dordrecht Heidelberg London.

Telford, W. M., Geldart, L. P., & Sheriff, R. E. (1990). Applied Geophysics (Second Edi). Cambridge University.

Todd, D. K., & Mays, L. W. (2005). Groundwater Hydrology (3rd ed.). John Wiley & Sons, Inc.

Ungureanu, C., Priceputu, A., Bugea, A. L., & Chiric?, A. (2017). Use of electric resistivity tomography (ERT) for detecting underground voids on highly anthropized urban construction sites. Procedia Engineering, 209, 202–209. https://doi.org/10.1016/j.proeng.2017.11.148.

Vienastra, S., & Febriarta, E. (2018). Karakteristik Airtanah di Pulau Yeben, Kabupaten Raja Ampat, Papua Barat. Prosiding Pertemuan Ilmiah Tahunan Ke-3 Perhimpunan Ahli Airtanah Indonesia, 3(November), 108–113.

https://doi.org/https://doi.org/10.17605/OSF.IO/EZHDT.

Wicaksono, A. P., Febriarta, E., Nurani, D. T. T., & Larasati, A. (2020). Evaluasi Kebutuhan Air Persemaian Di Kawasan Karst Nggorang Manggarai Barat, Labuan Bajo, Nusa Tenggara Timur. Jurnal Ilmu Lingkungan, 18(3), 572–581. https://doi.org/10.14710/jil.18.3.572-581.