Analisis Potensi Pencemaran Air Tanah Bebas di Lereng Kaki Koluvial dan Dataran Aluvial Daerah Aliran Sungai Pesing Menggunakan Integrasi Metode GOD dan SIG Berbasis Web Analysis of Potential Groundwater Pollution in Unconfined Aquifer in Colluvial Footslopes and Alluvial Plains of the Pesing Watershed Using Integration of GOD and GIS Web Based Methods
Main Article Content
Abstract
ABSTRACT
Agricultural, livestock, and domestic activities in the alluvial plains and the colluvial footslopes of the Pesing watershed have the potential to reduce groundwater quality in an unconfined aquifer. Environmental characteristics need to be identified spatially to determine the potential for groundwater contamination. The latest mapping technology also needs to be identified to determine its ability to disseminate information on potential groundwater pollution. The research was conducted to determine the potential for groundwater pollution and to identify the capability of a web-based GIS as a medium for disseminating geospatial information. Potential groundwater contamination was identified using the GOD method. The variables used include the type of aquifer, aquifer lithology, and groundwater depth. Variables of aquifer type and aquifer lithology are known through secondary data, namely drilling data, geological data, and literature studies. Variable groundwater depth is known through field surveys. Sampling method used is systematic random sampling. Each variable is classified and visualized in the form of a thematic map. Three variables were analyzed by the overlay method. Based on the results of the analysis, it is known that in the rainy season, the research area is classified into three classes of potential for groundwater pollution, namely extreme potential with a percentage of 27% area, high potential with a rate of 71%, and medium potential with a percentage of 2%. The potential for groundwater contamination during the dry season is classified into two classes: high potential with an area of 43% and medium potential with a percentage of 57%. Temporal dynamics of the potential for groundwater pollution are caused by a variable sensitive to seasonal changes, namely the depth of groundwater. The land uses that have the most influence on the potential for groundwater contamination are rice fields and livestock manure disposal. Web-based GIS can be used as a medium for disseminating information on potential groundwater pollution. The program can be appropriately operated on a variety of electronic devices. Web-based GIS is equipped with a variety of features that can be used interactively for fundamental to applied analysis.
Keywords: groundwater, unconfined aquifer, GOD, GIS, web
ABSTRAK
Aktivitas pertanian, peternakan, dan domestik di dataran aluvial dan dataran kaki koluvial DAS Pesing berpotensi menurunkan kualitas air tanah bebas. Karakteristik lingkungan perlu diidentifikasi secara spasial untuk mengetahui potensi pencemaran air tanah. Teknologi pemetaan terkini juga perlu diidentifikasi untuk mengetahui kemampuannya dalam mendiseminasi informasi potensi pencemaran air tanah. Penelitian dilakukan untuk mengetahui potensi pencemaran air tanah dan mengidentifikasi kemampuan sistem informasi geografis berbasis (SIG) web sebagai media diseminasi informasi geospasial. Potensi pencemaran air tanah diidentifikasi menggunakan metode GOD (groundwater occurrence, overall lithology of aquifer, depth to water table). Variabel yang digunakan meliputi jenis akuifer, litologi akuifer, dan kedalaman air tanah. Variabel jenis akuifer dan litologi akuifer diketahui melalui data sekunder, yaitu data pengeboran, data geologi, dan studi literatur. Variabel kedalaman air tanah diketahui melalui survei lapangan. Metode sampling yang digunakan adalah acak bersistem. Setiap variabel diklasifikasi dan divisualkan dalam bentuk peta tematik. Ketiga variabel dianalisis dengan metode overlay. Berdasarkan hasil analisis diketahui bahwa pada musim hujan daerah penelitian terklasifikasi menjadi tiga kelas potensi pencemaran air tanah bebas, yaitu potensi ekstrim dengan persentase luas 27%, potensi tinggi dengan persentase 71%, dan potensi sedang dengan persentase 2%. Potensi pencemaran air tanah pada musim kemarau terklasifikasi menjadi dua kelas, yaitu potensi tinggi dengan persentase luas 43% dan potensi sedang dengan persentase 57%. Dinamika temporal potensi pencemaran air tanah bebas disebabkan karena terdapat variabel yang sensitif terhadap perubahan musim, yaitu kedalaman air tanah. Penggunaan lahan yang paling berpengaruh terhadap potensi pencemaran air tanah adalah sawah dan lokasi pembuangan kotoran ternak. SIG berbasis web mampu digunakan sebagai media diseminasi informasi potensi pencemaran air tanah bebas. Program dapat dioperasikan dengan baik pada beragam perangkat elektronik. Program dilengkapi dengan beragam fitur yang dapat digunakan secara interaktif untuk analisis dasar hingga terapan.
Kata kunci: air tanah, akuifer bebas, GOD, SIG, web
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
JTL provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.
JTL by PTL-BPPT is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Permissions beyond the scope of this license may be available at http://ejurnal.bppt.go.id/index.php/JTL
References
Al-haidarey, M. J. S., Hussain, H. M., Al-ansari, N., & Knutsson, S. (2014). Evaluation and mapping groundwater suitability for irrigation using GIS in Najaf governorate, Iraq. Journal of Environmental Hydrology, 22(4), 1–16.
Adji, T. N., & Sejati, S. P. (2014). Identification of groundwater potential zones within an area with various geomorphological units by using several field parameters and a GIS approach in Kulon Progo Regency, Java, Indonesia. Arabian Journal of Geosciences, 7(1). https://doi.org/10.1007/s12517-012-0779-z
Adnan, M. S., Hendrayana, H., & Ekaputra, D. P. (2013). Groundwater model as a tool for sustainable groundwater management. International Journal of Integrated Engineering, Vol. 5, pp. 46–57. Retrieved from http://penerbit.uthm.edu.my/ojs/index.php/ijie/article/view/771/502
Ahadiah, S. N., & Widyastuti, M. (2020). Study of groundwater vulnerability to contamination using the DRANTHVP method in wates groundwater Basin, Indonesia. E3S Web of Conferences, 02022, 1–7.
Akhter, S., & Hossain, S. (2017). Groundwater modelling of dhaka city and surrounding areas and evaluation of the effect of artificial recharge to aquifers. World Journal of Research and Review, 5(3), 54–60.
Al, A. A., Zainab, M., Hussain, D. A., & Ansari, N. Al. (2020). Assessment of the groundwater suitability for irrigation near Al Kufa City and preparing the final water quality maps using spatial distribution tools. Environmental Earth Sciences, 79(13), 1–12. https://doi.org/10.1007/s12665-020-09060-w
Asdak, C. (2014). Hidrologi dan pengelolaan daerah aliran sungai. Yogyakarta: UGM Press.
Baba, M. El, Kayastha, P., Huysmans, M., & Smedt, F. De. (2020). Contamination assessment and mapping using. Water, 12, 1–19.
Boumans, L., Fraters, D., & Drecht, G. Van. (2017). Mapping nitrate leaching to upper groundwater in the sandy regions of the Netherlands, using conceptual knowledge. Environmental Monitoring Assessment, 137, 243–249. https://doi.org/10.1007/s10661-007-9756-5
Ha, K., Lee, E., An, H., Kim, S., Park, C., Kim, G., & Ko, K. (2021). Evaluation of seasonal groundwater quality changes associated with groundwater pumping and level fluctuations in an agricultural area, Korea. Water, 13(51), 1–21.
Hendrayana, H., & Vicente, V. A. de S. (2013). Cadangan airtanah berdasarkan geometri dan konfigurasi sistem akuifer cekungan airtanah Yogyakarta-Sleman. Prosiding Seminar Nasional Kebumian Ke-6, 356–370.
Kaddour, K., Hacen, B. El, Hlima, D., & Yasmina, D. (2018a). Groundwater vulnerability assessment using god method in boulimat coastal district of Bejaia area north east Algeria. Journal of Biodiversity and Environmental Sciences, 13(3), 109–116.
Kraak, M. J., & Ormelling, F. (2010). Cartography: visualization of spatial data 3rd edition. Harlow: Pearson Education Limited.
Lan, T., & Longley, P. (2019). Geo referencing and mapping 1901 census addresses for England and Wales. International Journal of Geo- Information, 8(320), 2–14.
Li, H., Lu, Y., Zheng, C., Zhang, X., Zhou, B., & Wu, J. (2020). Seasonal and inter-annual variability of groundwater and their responses to climate change and human activities in arid and desert areas: Water, 12(303), 1–23.
Longley, P. A., Goddchild, M. F., Maguire, D. J., & Rhind, D. W. (2015). Geographic information science and systems. New Jersey: John Willey and Son Inc.
Mahrez, B., Klebingat, S., & Agaguenia, S. (2018). A gis-based god model and hazard index analysis: the quaternary coastal collo aquifer. (June 2019). https://doi.org/10.1111/gwat.12824
Maria, R. (2017). Comparative studies of groundwater vulnerability assessment comparative studies of groundwater vulnerability assessment. Global Colloquium on Geo Sciences and Engineering, 1–6. https://doi.org/10.1088/1755-1315/118/1/012018
Olusheyi, O., Balogun, M., Azeem, A., Adesina, K., Okehi, A., & Matthew, A. (2020). Effects of industrialization on groundwater quality in Shagamu and Ota industrial areas of Ogun State, Nigeria. Heliyon, 6, 1–13. https://doi.org/10.1016/j.heliyon.2020.e04353
Oroji, B. (2019a). Assessing groundwater vulnerability by pollution mapping in Iran?: case study Hamadan – Bahar plain. Geofisica Internacional.
Oroji, B. (2019b). Assessing groundwater vulnerability assessment using gis based drastic and God in the Asadabad plain. Journal of Materials and Environmental Sciences, 9(6), 1809-1816.
Purnama, I. L. S. (2019). Ketersediaan dan kualitas airtanah pada akuifer tidak tertekan di Kecamatan Jawilan Dan Kopo, Kabupaten Serang. 33(1), 16–25. https://doi.org/10.22146/mgi.38813
Purnama, S., Suyono, & Sulaswono, B. (2007). Sistem akuifer dan potensi air tanah daerah aliran sungai (das) opak. Forum Geografi, 21(2).
Rahardjo, W., Sukandarrumidi, & Rosidi, H. M.. (1977). Peta geologi lembar Yogyakarta, Jawa.
Riasasi, W., & Sejati, S. P. (2019). Potential of groundwater to supply domestic water necessity in evacuation shelters of Merapi volcano eruption. IOP Conference Series: Earth and Environmental Science 271, 1–11. https://doi.org/http://dx.doi.org/10.1088/1755-1315/271/1/012014
Ribeiro, T. Y. S. L., & Dill, A. M. M. C. (2006). Evaluation of an intrinsic and a specific vulnerability assessment method in comparison with groundwater salinisation and nitrate contamination levels in two agricultural regions in the south of Portugal. Hydrogeology Journal, 14, 79–99. https://doi.org/10.1007/s10040-004-0396-3.
Rosell, P. (2021). A methodology for assessing groundwater pollution hazard by nitrates from agricultural sources: Application to the Gallocanta Groundwater Basin (Spain). Sustainability, 13(6321), 1–15.
Santosa, L. W., & Adji, T. N. (2014). Karakteristik akuifer dan potensi airtanah Graben Bantul. Yogyakarta: Gadjah Mada University Press.
Sartika, D., Muhni, A., & Putra, H. S. (2020). Kerentanan airtanah terhadap pencemaran menggunakan metode god di Kota Banda Aceh. Journal Aceh Physical Society, 9(3), 84–90. https://doi.org/10.24815/jacps.v9i3.17332
Sejati, S. P. (2021). Tingkat fluktuasi air tanah pada jangka pendek di Kecamatan Ngemplak, Kabupaten Sleman, provinsi Daerah Istimewa Yogyakarta. Jurnal Teknologi Lingkungan, 22(1), 121–129. https://doi.org/https://doi.org/10.29122/jtl.v22i1.3985https://doi.org/10.29122/jtl.v22i1.3985
Sejati, S.P. (2019). Perbandingan akurasi metode idw dan kriging dalam pemetaan muka air tanah. Majalah Geografi Indonesia, 33(2), 49–57. https://doi.org/10.22146/mgi.41473
Sejati, S.P. (2020). Potensi pencemaran air tanah bebas pada sebagian kawasan resapan air di lereng selatan gunung api merapi. Jurnal Pendidikan Geografi: Kajian, Teori, Dan Praktik Dalam Pendidikan Dan Ilmu Geografi, 25(01), 25–38. https://doi.org/http://dx.doi.org/10.17977/um017v25i12020p025
Shahab, A., Qi, S., Rad, S., & Khan, M. (2018). Groundwater vulnerability assessment using GIS-based drastic method in the irrigated and coastal region of Sindh Province, Pakistan. Hydrology Research. https://doi.org/10.2166/nh.2018.001
Subagiyo, L., Lazar, P. A. D., & Sumaryono. (2017). Sebaran indikasi air tanah terkontaminasi lindi di sekitar tempat pembuangan akhir sampah Bukit Pinang Kota Samarinda. Journal of Physical Science and Engineering, 2(1), 13–19.
Sutardi, A., Suprayogi, S., & Adji, N. (2017). Kajian kualitas airtanah bebas antara sungai kuning dan sungai tepus di Kecamatan Ngemplak, Yogyakata , Indonesia. Majalah Geografi I, 31(1), 31–38.
Todd, D. K. (2005). Groundwater Hydrology. New York: John Willey and Sons.
Tyas, B., Rukmana, S., & Bargawa, W. S. (2020). Assessment of groundwater vulnerability using assessment of groundwater vulnerability using God method. IOP Conference Series: Earth and Environmental Science, 1–8. https://doi.org/10.1088/1755-1315/477/1/012020
Vrba, J., & Zoporozec, A. (1994). Guidebook on mapping groundwater vulnerability. Hannover: International Association of Hydrogeologists.
Widyastuti, M., Suprayogi, S., Hadi, M. P., & Christanto, N. (2021). Study of Groundwater Vulnerability to Pollution in The Tambakbayan Watershed in 2006 and 2007. Jurnal Geografi Gea, 21(April), 1–15.
Zhou, Z., Ansems, N., & Torfs, P. (2015). A global assessment of nitrate contamination in groundwater. International Groundwater Resources Assessment Center; Internship report; Wageningen University: Wageningen, The Netherlands.