Pengaruh Typha angustifolia, Echinodorus paniculatus, dan Ludwigia adscendens terhadap Kinerja Horizontal Sub-surface Flow Constructed Wetland dalam Penghapusan Total coliform dan TSS The Effect of Typha angustifolia, Echinodorus paniculatus, and Ludwigia adscendens on The Performance of Horizontal Sub-surface Flow Constructed Wetland in Total coliforms and TSS Removal

Main Article Content

Abdul Gani Akhmad
Saiful Darman
Aiyen Aiyen
Wildani Pingkan S. Hamsens


The performance of the Wastewater Treatment Plants (WWTP) in several hospitals is reported low, where the wastewater often does not meet the quality standards so that it has the opportunity to pollute the environment. Horizontal Sub-surface Flow Constructed Wetland (HSSF-CW) is a green and sustainable technology; it can be used as an alternative technology for hospital wastewater treatment. This study aimed to evaluate the performance of HSSF-CW on a pilot-scale in the removal of total coliform (TC) and total suspended solids (TSS), as well as to assess the effect of Ludwigia adscendens, Echinodorus paniculatus, and Typha angustifolia plants on the performance of HSSF-CW using experimental methods. The operational and design strategy adopted was setting the water depth at 0.30 m, maximum hydraulic loading rate of 3.375 m3/day, continuous wastewater recirculation, the use of river sand-gravel media measuring 58 mm, as well as setting tight spacing for T. Angustifolia was 53 clumps per m2, L. adscendens 133 stems per m2, and E. paniculatus 13 clumps per m2. The results of this study indicate that the performance of the HSSF-CW system on a pilot-scale planted with L. adscendens, E. paniculatus, or T. Angustifolia has proven to be able to eliminate the TC and TSS parameters of hospital wastewater to match their respective quality standards in hydraulic retention times <2 and 4 days. It can be concluded that T. Angustifolia, E. paniculatus, and L. adscendens positively boost the performance of HSSF-CW in the removal of TC and TSS. However, T. Angustifolia had a better effect than E. paniculatus and L. adscendens on the performance of the HSSF-CW system.

Keywords: Constructed wetland, E. paniculatus, Hospital wastewater, L. adscendens, T. angustifolia


Kinerja Instalasi Pengolahan Air Limbah (IPAL) beberapa rumah sakit dilaporkan rendah, dimana air buangannya seringkali tidak memenuhi baku mutu sehingga berpeluang mencemari lingkungan. Horizontal Sub-surface Flow Constructed Wetland (HSSF-CW) adalah teknologi hijau dan berkelanjutan, yang dapat digunakan sebagai teknologi alternatif untuk pengolahan air limbah rumah sakit. Penelitian ini bertujuan untuk mengevaluasi kinerja HSSF-CW skala percontohan dalam penghilangan total coliform (TC) dan total padatan tersuspensi (TSS), serta menilai pengaruh tumbuhan Ludwigia adscendens, Echinodorus paniculatus, dan Typha angustifolia terhadap kinerja HSSF-CW dengan metode eksperimental. Desain dan strategi operasional yang ditempuh adalah pengaturan kedalaman air pada 0,30 m, laju pemuatan hidrolik maksimal 3,375 m3/hari, resirkulasi air limbah secara kontinyu, pemakaian media pasir-kerikil sungai ukuran 5–8 mm, serta pengaturan jarak tanam yang rapat masing-masing untuk T. angustifolia adalah 53 rumpun per m2, L. adscendens 133 batang per m2, dan E. paniculatus 13 rumpun per m2. Hasil penelitian ini menunjukkan bahwa kinerja sistem HSSF-CW skala percontohan yang ditanami L. adscendens, E. paniculatus, ataupun T. angustifolia terbukti mampu menyisihkan parameter TC dan TSS air limbah rumah sakit hingga sesuai baku mutu dalam waktu retensi hidrolik <2 dan 4 hari. Dapat disimpulkan bahwa T. angustifolia, E. paniculatus, dan L. adscendens secara positif mendorong kinerja HSSF-CW dalam penghilangan TC dan TSS. Namun, T. angustifolia memiliki pengaruh lebih baik dibandingkan E. paniculatus dan L. adscendens terhadap kinerja sistem HSSF-CW.

Kata kunci: Air limbah rumah sakit, E. paniculatus, Lahan basah buatan, L. adscendens, T. angustifolia

Article Details



Akhmad, A. G., Darman, S., Aiyen, & Hamzens, W. P. S. (2020). An Opportunity for Using Constructed Wetland Technology in Hospital Wastewater Treatment: A Preliminary Study. The 2020 International Conference on Science in Engineering and Technology. Palu, Indonesia: IOP.

Angassa, K., Leta, S., Mulat, W., Kloos, H., & Meers, E. (2018). Organic Matter and Nutrient Removal Performance of Horizontal Subsurface Flow Constructed Wetlands Planted with Phragmite Karka and Vetiveria Zizanioide for Treating Municipal Wastewater. Environmental Processes 5(1):115–30. doi: 10.1007/s40710-017-0276-1.

Anon. n.d. PerMen LHK No 68 tahun 2016 Baku Mutu Limbah Domestik.Pdf - Google Drive. Retrieved June 22, 2020 (

Avelar, F. F., de Matos A. T., de Matos M. P., & Borges, A. C. (2014). Coliform Bacteria Removal from Sewage in Constructed Wetlands Planted with Mentha Aquatica. Environmental Technology 35(16):2095–2103. doi: 10.1080/09593330.2014.893025.

Calheiros, C. S. C., Bessa, V. S., Mesquita, R. B. R., Brix, H., Rangel, A. O. S. S., & Castro, P. M. L. (2015). Constructed Wetland with a Polyculture of Ornamental Plants for Wastewater Treatment at a Rural Tourism Facility. Ecological Engineering 79:1–7. doi: 10.1016/j.ecoleng.2015.03.001.

Carraro, E., Bonetta, Si, Bertino, C., Lorenzi, E., Bonetta, Sa, & Gilli, G. (2016). Hospital Effluents Management: Chemical, Physical, Microbiological Risks and Legislation in Different Countries. Journal of Environmental Management 168:185–99. doi: 10.1016/j.jenvman.2015.11.021.

Chandanshive, V. V., Kadam, S. K., Khandare, R. V., Kurade, M. B., Jeon, B., Jadhav, J. P., & Govindwar, S. P. (2018). In Situ Phytoremediation of Dyes from Textile Wastewater Using Garden Ornamental Plants, Effect on Soil Quality and Plant Growth. Chemosphere 210:968–76. doi: 10.1016/j.chemosphere.2018.07.064.

Cooper, P. F., Job, G. D., & Green, M. B. (1996). Reed Beds and Constructed Wetlands for Wastewater Treatment. Swindon?: WRc Swindon.

Decamp, O., Warren, A., & Sanchez, R. (1999). The Role of Ciliated Protozoa in Subsurface Flow Wetlands and Their Potential as Bioindicators. Water Science and Technology 40(3). doi: 10.1016/S0273-1223(99)00444-8.

Diaz, F. J., O’Geen, A. T. , & Dahlgren, R. A. (2010). Efficacy of Constructed Wetlands for Removal of Bacterial Contamination from Agricultural Return Flows. Agric. Water Manag 97(11):1813–1821.

Fernández, A., Tejedor, C., & Chordi, A. (1992). Effect of Different Factors on the Die-off of Fecal Bacteria in a Stabilization Pond Purification Plant. Water Research 26(8):1093–98. doi: 10.1016/0043-1354(92)90145-T.

Gaballah, M. S., Abdelwahab, O., Barakat, K. M., & Aboagye, D. (2020). A Novel Horizontal Subsurface Flow Constructed Wetland Planted with Typha Angustifolia for Treatment of Polluted Water. Environmental Science and Pollution Research 27(22):28449–62. doi: 10.1007/s11356-020-08669-5.

Garc??a, J., Vivar, J., Aromir, M., & Mujeriego, R. (2003). Role of Hydraulic Retention Time and Granular Medium in Microbial Removal in Tertiary Treatment Reed Beds. Water Research 37(11):2645–53. doi: 10.1016/S0043-1354(03)00066-6.

Hasbi, M., Budijono, B. & Hendrizali, A. (2020). Heavy Metal Uptake Capacity By Floating Plant Island in Sail River Pekanbaru. IOP Conference Series: Earth and Environmental Science 430(1):012035. doi: 10.1088/1755-1315/430/1/012035.

Headley, T, Nivala, J., Kassa, K., Olsson, L., Wallace, S., Brix, H., van Afferden, M., & Müller, R. (2013). Escherichia Coli Removal and Internal Dynamics in Subsurface Flow Ecotechnologies: Effects of Design and Plants. Ecological Engineering 61:564–74. doi: 10.1016/j.ecoleng.2013.07.062.

Ji, Z., Tang, W., & Pei, Y. (2021). Constructed Wetland Substrates: A Review on Development, Function Mechanisms, and Application in Contaminants Removal. Chemosphere 286:131564. doi: 10.1016/j.chemosphere.2021.131564.

Kansiime, F., & van Bruggen, J. J. A. (2001). Distribution and Retention of Faecal Coliforms in the Nakivubo Wetland in Kampala, Uganda. Water Science and Technology 44(11–12):199–206. doi: 10.2166/wst.2001.0829.

Karathanasis, A. D., Potter, C. L., & Coyne, M. S. (2003). Vegetation Effects on Fecal Bacteria, BOD, and Suspended Solid Removal in Constructed Wetlands Treating Domestic Wastewater. Ecological Engineering 20(2):157–69. doi: 10.1016/S0925-8574(03)00011-9.

Karim, M. R., Manshadi, F. D., Karpiscak, M. M., & Gerba, C. P. (2004). The Persistence and Removal of Enteric Pathogens in Constructed Wetlands. Water Research 38(7):1831–37. doi: 10.1016/j.watres.2003.12.029.

Li, Y., Zhang, J., Zhu, G., Liu, Y., Wu, B., Ng, W.J., Appan, A. & Tan, A. S.. (2016). Phytoextraction, Phytotransformation and Rhizodegradation of Ibuprofen Associated with Typha Angustifolia in a Horizontal Subsurface Flow Constructed Wetland. Water Research 102:294–304. doi: 10.1016/j.watres.2016.06.049.

Sandoval-Herazo, L., Alvarado-Lassman, A., Marín-Muñiz, J. L., Méndez-Contreras, J. M., & Zamora-Castro, S. A. (2018). Effects of the Use of Ornamental Plants and Different Substrates in the Removal of Wastewater Pollutants through Microcosms of Constructed Wetlands. Sustainability 10(5):1594. doi: 10.3390/su10051594.

Mara, D. D., & Johnson, M. L. (2006). Aerated Rock Filters for Enhanced Ammonia and Fecal Coliform Removal from Facultative Pond Effluents. Journal of Environmental Engineering 132(4):574–77. doi: 10.1061/(ASCE)0733-9372(2006)132:4(574).

Marín-Muñiz, J. L., García-González, M. C., Ruelas-Monjardín, L. C., Moreno-Casasola, & Patricia. (2018). Influence of Different Porous Media and Ornamental Vegetation on Wastewater Pollutant Removal in Vertical Subsurface Flow Wetland Microcosms. Environmental Engineering Science 35(2):88–94. doi: 10.1089/ees.2017.0061.

Moshiri, G. A. (2020). Constructed Wetlands for Water Quality Improvement. edited by G. A. Moshiri. CRC Press.

Ottova, V., Balcarova, J., & Vymazal, J. (1997). Microbial Characteristics of Constructed Wetlands. Water Science and Technology 35(5). doi: 10.1016/S0273-1223(97)00060-7.

Pearson, H. W., Mara, D. D., Mills, S. W., & Smallman, D. J. (1987). Physico-Chemical Parameters Influencing Faecal Bacterial Survival in Waste Stabilization Ponds. Water Science and Technology 19(12):145–52. doi: 10.2166/wst.1987.0139.

Pincam, T., & Jampeetong, A. (2020). Treatment of Anaerobic Digester Effluent Using Typha Angustifolia L.: Growth Responses and Treatment Efficiency. Journal of Water and Environment Technology 18(2):105–16. doi: 10.2965/jwet.19-045.

Prescott. (2008). Microbiology. 7th ed. USA: McGraw-Hill Book Company.

Puspita, L., Ratnawati, E., Suryadiputra, I. N. N., & Meutia, A. A. (2005). Lahan Basah Buatan Di Indonesia. Bogor: Wetlands International Indonesia Programme dan Ditjen, PHKA.

Redder, A., Dürr, M., Daeschlein, G., Baeder-Bederski, O., Koch, C., Müller, R. A., Exner, M., & Borneff-Lipp, M. (2010). Constructed Wetlands – Are They Safe in Reducing Protozoan Parasites? International Journal of Hygiene and Environmental Health 213(1):72–77. doi: 10.1016/j.ijheh.2009.12.001.

Richter, A. Y., & Weaver, R. W. (2003). Ultraviolet Disinfection of Effluent from Subsurface Flow Constructed Wetlands. Environmental Technology 24(9):1175–82. doi: 10.1080/09593330309385658.

Saeed, T., & Sun, G. (2012). A Review on Nitrogen and Organics Removal Mechanisms in Subsurface Flow Constructed Wetlands: Dependency on Environmental Parameters, Operating Conditions and Supporting Media. Journal of Environmental Management 112:429–48. doi: 10.1016/j.jenvman.2012.08.011.

Solano, M., Soriano, P., & Ciria, M. (2004). Constructed Wetlands as a Sustainable Solution for Wastewater Treatment in Small Villages. Biosyst. Eng. 87(1):109–18. doi:

Toscano, A., Hellio, C., Marzo, A., Milani, M., Lebret, K., Cirelli, G. L., & Langergraber, G. (2013). Removal Efficiency of a Constructed Wetland Combined with Ultrasound and UV Devices for Wastewater Reuse in Agriculture. Environmental Technology 34(15):2327–36. doi: 10.1080/09593330.2013.767284.

Tuncsiper, B., Ayaz, S., & Akca, L. (2012). Coliform Bacteria Removal from Septic Wastewater in A Pilot-Scale Combined Constructed Wetland System. Environmental Engineering and Management Journal 11(10):1873–79. doi: 10.30638/eemj.2012.233.

USEPA. (2000). Manual: Constructed Wetlands Treatment of Municipal Wastewaters. Cincinnati, Ohio 45268: National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency.

Wu, S., Carvalho, P. N., Müller, J. A., Manoj, V. R., & Dong, R. (2016). Sanitation in Constructed Wetlands: A Review on the Removal of Human Pathogens and Fecal Indicators. Science of The Total Environment 541:8–22. doi: 10.1016/j.scitotenv.2015.09.047.

Xu, L., Cheng, S., Zhuang, P., Xie, D., Li, S., Liu, D., Li, Z., Wang, F., & Xing, F. (2020). Assessment of the Nutrient Removal Potential of Floating Native and Exotic Aquatic Macrophytes Cultured in Swine Manure Wastewater. International Journal of Environmental Research and Public Health 17(3):1103. doi: 10.3390/ijerph17031103.

Ye, F., & Li, Y. (2009). Enhancement of Nitrogen Removal in Towery Hybrid Constructed Wetland to Treat Domestic Wastewater for Small Rural Communities. Ecological Engineering 35(7):1043–50. doi: 10.1016/j.ecoleng.2009.03.009.