Prediksi Konsentrasi Klorofil-a Menggunakan Data Citra Satelit Sentinel-2A di Waduk Jatiluhur Kabupaten Purwakarta Prediction of Chlorophyll-a Using Satellite Imagery Data Sentinel-2A in Jatiluhur Reservoir Purwakarta Regency

Main Article Content

Arip Rahman
Lismining Pujiyani Astuti
Andri Warsa
Agus Arifin Sentosa

Abstract

Lakes, reservoirs, and rivers are among the most changing ecosystems on the earth’s surface. Chlorophyll-a as the main pigment in phytoplankton is often used to describe the water quality of lake and reservoirs and as an important element that indicates the tropical status of a waters. Spatial and temporal changes in algae blooms in a lake make it difficult to use in situ monitoring. The aim of the study is to predict the concentration of chlorophyll-a in Jatiluhur Reservoirs. The data used in this study were chlorophyll-a data from in situ measurements and satellite data Sentinel-2A. The method to obtain the value of the concentration of chlorophyll-a are an empirical and semi-analytical method. The empirical method is carried out by correlating in situ data with ratio of band 5 (red edge) and band 4 (red) (B5/B4). While the semi-analytical method is carried out by analyzing the Case 2 Regional Coast Colour (C2RCC) algorithm that integration in Sentinel Application Platform (SNAP) software. Correlation between in situ data and prediction of chlorophyll-a data has a strong relationship with the coefficient of determination R2=0.67 (in situ data with ratio prediction data) and R2=0.56 (in situ data with C2RCC prediction data). Based on this, remote sensing data on Sentinel-2A imagery with the application of several algorithms, can be used to support water quality monitoring activities in lakes and reservoirs, especially chlorophyll-a.


Keywords: Chlorophyll-a, Sentinel-2A satellite imagery, Jatiluhur reservoirs, Empirical, Semi-analytical


ABSTRAK


Danau, waduk, dan sungai merupakan salah satu ekosistem yang paling banyak berubah di permukaan bumi. Klorofil-a sebagai pigmen utama fitoplankton sering digunakan untuk menggambarkan kualitas perairan danau dan waduk. Selain itu, klorofil-a merupakan unsur penting yang menandakan status tropik suatu perairan. Perubahan secara spasial dan temporal blooming alga pada suatu danau/waduk membuat sulit untuk melakukan monitoring secara in situ. Penelitian dilakukan untuk memprediksi nilai konsentrasi klorofil-a di Waduk Jatiluhur menggunakan data penginderaan jauh. Data yang digunakan dalam penelitian ini adalah data klorofil-a hasil pengukuran in situ dan data citra satelit Sentinel-2A. Metode yang digunakan untuk memprediksi nilai konsentrasi klorofil-a adalah metode empiris dan semi analisis. Metode empiris dilakukan dengan mengkorelasikan antara nilai klorofil-a in situ dengan nilai rasio band 5 (red edge) dan band 4 (red) (B5/B4). Sedangkan metode semi analisis dilakukan dengan analisis algoritma Case 2 Regional Coast Colour (C2RCC) yang terintegrasi pada perangkat lunak Sentinel Application Platform (SNAP). Hasil korelasi antara data in situ dan data prediksi klorofil-a diperoleh hubungan yang kuat dengan koefisien determinasi R2=0,67 (data in situ dengan data prediksi rasio) dan R2=0,56 (data in situ dengan data prediksi C2RCC). Berdasarkan hal tersebut, data penginderaan jauh citra Sentinel-2A dengan aplikasi beberapa algoritma, dapat digunakan untuk mendukung kegiatan monitoring kualitas perairan di danau dan waduk terutama klorofil-a.


Kata kunci: Klorofil-a, Citra Sentinel-2A, Waduk Jatiluhur, Empiris, Semi analisis

Article Details

Section
RESEARCH ARTICLES

References

Abell, J. M., Özkundakci, D., Hamilton, D. P., & Miller SD. (2011). Relationships between land use and nitrogen and phosphorus in New Zealand lakes. Marine and Freshwater Research 62: 162–175. DOI: 10.1071/MF10180.

Ansper, A., & Alikas, K. (2019). Retrieval of chlorophyll a from Sentinel-2 MSI data for the European Union water framework directive reporting purposes. Remote Sensing 11. DOI: 10.3390/rs11010064.

APHA. (2005). Standard Methods for the Examination of Water and Waste Water Including Bottom Sediment and Sludges. Health Association Inc.: New York.

Astuti, Lismining, P. A., Sugianti, Y., Warsa, A., Rahman, A., & Hendrawan ALS. (2016). Tata Kelola Perikanan Berkelanjutan di Waduk Jatiluhur. Penerbit Deepublish. PENERBIT DEEPUBLISH: Yogyakarta.

Binding, C. E., Greenberg, T. A., & Bukata, R.P. (2013). The MERIS Maximum Chlorophyll Index; its merits and limitations for inland water algal bloom monitoring. Journal of Great Lakes Research 39: 100–107. DOI: 10.1016/j.jglr.2013.04.005.

Binding, C. E., Jerome, J.H., Bukata, R.P., & Booty, W.G. (2010). Suspended particulate matter in Lake Erie derived from MODIS aquatic colour imagery. International Journal of Remote Sensing 31: 5239–5255. DOI: 10.1080/01431160903302973.

Birk, S., & Ecke, F. (2014). The potential of remote sensing in ecological status assessment of coloured lakes using aquatic plants. Ecological Indicators 46: 398–406. DOI: 0.1016/j.ecolind.2014.06.035.

Bolpagni, R., Bresciani, M., Laini, A., Pinardi, M, Matta, E., Ampe, E. M., Giardino, C., Viaroli, P., & Bartoli, M. (2014). Remote sensing of phytoplankton-macrophyte coexistence in shallow hypereutrophic fluvial lakes. Hydrobiologia 737: 67–76. DOI: 10.1007/s10750-013-1800-6.

Bresciani, M., Cazzaniga, I., Austoni, M., Sforzi, T., Buzzi, F., Morabito, G., & Giardino, C. (2018). Mapping phytoplankton blooms in deep subalpine lakes from Sentinel-2A and Landsat-8. Hydrobiologia 824: 197–214. DOI: 10.1007/s10750-017-3462-2.

Buma, W.G., & Lee, S. Il. (2020). Evaluation of Sentinel-2 and Landsat 8 images for estimating Chlorophyll-a concentrations in Lake Chad, Africa. Remote Sensing 12. DOI: 10.3390/RS12152437.

Carneiro, F. M., Nabout, J.C., Vieira, L. C. G., Roland, F., & Bini, L. M. (2014). Determinants of chlorophyll-a concentration in tropical reservoirs. Hydrobiologia 740: 89–99. DOI: 10.1007/s10750-014-1940-3.

Doerffer, R., & Schiller, H. (2007). The MERIS Case 2 water algorithm. International Journal of Remote Sensing 28: 517–535. DOI: 10.1080/01431160600821127.

Green, E.P., Mumby, P.J., Edwards, A.J., & Clark, C. D. (1996). A review of remote sensing for the assessment and management of tropical coastal resources. Coastal Management 24: 1–40. DOI: 10.1080/08920759609362279.

Ha, N. T. T., Thao, N. T. P., Koike, K., & Nhuan, M. T. (2017). Selecting the best band ratio to estimate chlorophyll-a concentration in a tropical freshwater lake using sentinel 2A images from a Case study of Lake Ba Be (Northern Vietnam). ISPRS International Journal of Geo-Information 6. DOI: 10.3390/ijgi6090290.

IOCCG. (2000). IOCCG Report Number 03: Remote Sensing of Ocean Colour in Coastal, and Other Optically-Complex, Waters. IOCCG web page.

Lins, R. C., Martinez, J. M., Marques, D da. M., Cirilo, J. A., & Fragoso, C. R. (2017). Assessment of chlorophyll-a remote sensing algorithms in a productive tropical estuarine-lagoon system. Remote Sensing 9: 1–19. DOI: 10.3390/rs9060516.

Liu, W., Li, S., Bu, H., Zhang, Q., & Liu, G. (2012). Eutrophication in the Yunnan Plateau lakes: The influence of lake morphology, watershed land use, and socioeconomic factors. Environmental Science and Pollution Research 19: 858–870. DOI: 10.1007/s11356-011-0616-z.

Matthews, M. W. (2011). A current review of empirical procedures of remote sensing in Inland and near-coastal transitional waters. International Journal of Remote Sensing, 6855–6899. DOI: 10.1080/01431161.2010.512947.

Matthews, M. W., Bernard, S., & Winter, K. (2010). Remote sensing of cyanobacteria-dominant algal blooms and water quality parameters in Zeekoevlei, a small hypertrophic lake, using MERIS. Remote Sensing of Environment 114: 2070–2087. DOI: 10.1016/j.rse.2010.04.013.

Morel A, & Prieur L. (1977). Analysis of variations in ocean color. Limnology and Oceanography 22: 709–722. DOI: 10.4319/lo.1977.22.4.0709.

Nduru, R. E., Situmorang, M., & Tarigan, G. (2014). Analisa Faktor-Faktor Yang Mempengaruhi Hasil Produksi Padi Di Deli Serdang. Saintia Matematika 2: 71–83.

Ogashawara, I., Kiel, C., Jechow, A., Kohnert, K., Ruhtz, T., Grossart, H. P., Hölker, F., Nejstgaard, J. C., Berger, S. A., & Wollrab, S. (2021). The use of sentinel-2 for chlorophyll-A spatial dynamics assessment: A comparative study on different lakes in northern Germany. Remote Sensing 13: 1–26. DOI: 10.3390/rs13081542.

Paerl, H. W., Scott, J. T., McCarthy, M. J., Newell, S. E., Gardner, W. S., Havens, K. E., Hoffman, D. K., Wilhelm, S. W., & Wurtsbaugh, W. A. (2016). It Takes Two to Tango: When and Where Dual Nutrient (N & P) Reductions Are Needed to Protect Lakes and Downstream Ecosystems. Environmental Science and Technology 50: 10805–10813. DOI: 10.1021/acs.est.6b02575.