Penyisihan Nitrogen dengan Proses Anammox Menggunakan Lumpur Muara Penjalinan Kota Padang sebagai Inokulum Nitrogen Removal by Anammox Process Using Sludge from Muara Penjalinan of Padang City as Inoculum

Main Article Content

Faldi Lulrahman
Shinta Silvia
Zulkarnaini Zulkarnaini

Abstract

The purpose of this study was to analyze nitrogen removal by anaerobic ammonium oxidation (anammox) process using sludge from Muara Penjalinan Padang as an inoculum in a filter bioreactor (FtBR). The configuration of FtBR consisted of a housing filter with an effective volume of 1,500 mL and a string wound filter cartridge of 0.5 µm as a carrier for the growth of anammox bacteria. The artificial wastewater was made using seawater containing ammonium and nitrite with a concentration of 70 mg-N/L, which was delivered to the reactor continuously with a hydraulic retention time (HRT) of 24 hours. Influent and effluent samples were collected once-twice a week to analyze the concentration of ammonium, nitrite, and nitrate, based on Nessler, spectrophotometry, and UV screening methods. Process anammox takes place in FtBR based on the average ratio of ?NO2--N/?NH4+-N and ?NO3--N / ?NH4+-N of 0.986 dan 0.239. The nitrogen removal performance was calculated based on the ammonium conversion efficiency (ACE), nitrogen removal efficiency (NRE), nitrogen loading rate (NLR), and nitrogen removal rate (NRR). After operating the reactor for 143 days, the nitrogen removal of ACE, NRE, and NRR were 20.268%, 16. 872%, and 0.026 kg-N/m3·d at NLR 0.1804 kg-N/m3·d.


Keywords: Anammox, Filter bioreactor, Muara Penjalinan, Seawater, Sludge


ABSTRAK


Anaerobic ammonium oxidation (anammox) merupakan penyisihan amonium menjadi gas nitrogen menggunakan nitrit sebagai penerima elektron dan berkontribusi dalam penyisihan nitrogen di lautan. Penelitian ini bertujuan untuk menganalisis penyisihan nitrogen melalui proses anammox menggunakan lumpur Muara Penjalinan Kota Padang sebagai inokulum pada filter bioreactor (FtBR). Konfigurasi FtBR terdiri atas housing filter dan string wound filter cartridge sebagai media lekat untuk pertumbuhan biomassa anammox yang dioperasikan secara kontinu dengan hydraulic retention time (HRT) 24 jam pada suhu ambien. Limbah artifisial dibuat menggunakan air laut yang dengan menambahkan 70 mg-N/L amonium dan nitrit masing-masingnya yang dipompakan ke reaktor secara kontinu. Pengambilan sampel influen dan efluen dilakukan satu hingga dua kali dalam seminggu untuk pengukuran konsentrasi amonium, nitrit dan nitrat berdasarkan metode Nessler, spektrofotometri, dan skrining spektrofotometri ultraviolet. Proses anammox berlangsung dalam reaktor berdasarkan rasio ?NO2--N/?NH4+-N dan ?NO3--N / ?NH4+-N sebesar 0,986 dan 0,239 yang mendekati stoikiometri reaksi anammox. Setelah operasional reaktor selama 143 hari didapatkan kinerja penyisihan nitrogen maksimal ammonium conversion efficiency (ACE), nitrogen removal efficiency (NRE) dan nitrogen removal rate (NRR) berturut-turut 20,268%, 16,872% dan 0,026 kg-N/m3.h pada nitrogen loading rate (NLR) 0,1804 kg-N/m3.h.


Kata kunci: Anammox, Filter bioreactor, Muara Penjalinan, Air laut, Lumpur

Article Details

Section
RESEARCH ARTICLES

References

Agustina, T. E., Novia N., Diansyah, G., Ike, M., & Soda, S. (2017). Nitrogen removal by anammox biofilm column reactor at moderately low temperature. Indonesian Journal of Fundamental and Applied Chemistry, 2(3),78–82. doi: 10.24845/ijfac.v2.i4.78.

Ali, M., Oshiki, M., & Okabe, S. (2014). Simple, rapid and effective preservation and reactivation of anaerobic ammonium oxidizing bacterium candidatus brocadia sinica. Water Research, 57(0), 215–222. doi: 10.1016/j.watres.2014.03.036.

Chamchoi, N. & Nitisoravut, S. (2007). Anammox enrichment from different conventional sludges. Chemosphere, 66(11), 2225–32. doi: 10.1016/j.chemosphere.2006.09.036.

Chen, C., Sun, F., Zhang, H., Wang, J., Shen, Y., & Liang, X. (2016). Evaluation of COD effect on anammox process and microbial communities in the anaerobic baffled reactor (ABR). Bioresource Technology, 216, 571–78. doi: 10.1016/j.biortech.2016.05.115.

Graaf, A. A. Van De, Bruijn, P. De, Robertson, L. A., Jetten, M. M., & Kuenen, J. G. (1996). Autotrophic growth of anaerobic in a fluidized bed reactor. Microbiology, 142, 2187-2196.

Gumelar, G., Zainuddin, E., & Zulkarnaini, Z. (2022). Anaerobic ammonium oxidation performance in shrimp pond wastewater treatment. Andalasian International Journal of Applied Science, Engineering, and Technology (AIJASET), 02(02), 4–9. doi: 10.25077/aijaset.v2i1.41.

Kartal, B., De Almeida, N. M., Maalcke, W. J., Op den Camp, H. J. M., Jetten, M. S. M., & Keltjens, J. T. (2013). How to make a living from anaerobic ammonium oxidation. FEMS Microbiology Reviews, 37(3), 428–61. doi: 10.1111/1574-6976.12014.

Lotti, T., Kleerebezem, R., Lubello, C., & van Loosdrecht, M. C. M. M. (2014). Physiological and kinetic characterization of a suspended cell anammox culture. Water Research, 60, 1–14. doi: 10.1016/j.watres.2014.04.017.

Lu, Y., Ma, L., Ma, L., Shan, B., & Chang, J. (2017). Improvement of start-up and nitrogen removal of anammox process in reactors inoculated with conventional activated sludge using biofilm carrier materials. Environmental Technology, 0(0), 1–24. doi: 10.1080/09593330.2017.1294624.

Mirghorayshi, M., Zinatizadeh, A. A., & Van Loosdrecht, M. (2018). Evaluating the process performance and potential of a high-rate single airlift bioreactor for simultaneous carbon and nitrogen removal through coupling different pathways from a nitrogen-rich wastewater. Bioresource Technology, 260, 44–52. doi: 10.1016/j.biortech.2018.03.048.

Putra, R. P., Zulkarnaini, & Komala, P. S. (2020). Start-Up Anammox Process Using Sludge from Koto Baru Lake as Inoculum. Teknologi Lingkungan, 21(2), 138–146.

Qian, G., Wang, J., Kan, J., Zhang, X. X., Xia, Z., Zhang, X. X., Miao, Y., & Sun, J. (2018). Diversity and distribution of anammox bacteria in water column and sediments of the eastern indian ocean. International Biodeterioration and Biodegradation, 133, 52–62. doi: 10.1016/j.ibiod.2018.05.015.

Skiba, M. A., Maloney, F. P., Dan, Q., Fraley, A. E., Aldrich, C. C., Smith, J. L., & Brown, W. C. (2018). PKS–NRPS enzymology and structural biology: considerations in protein production. Methods in Enzymology, 604, 45-88.

Song, G. D., Liu, S. M., Marchant, H., Kuypers, M. M. M., & Lavik, G. (2013). Anammox, denitrification and dissimilatory nitrate reduction to ammonium in the East China Sea sediment. Biogeosciences, 10(11), 6851–64. doi: 10.5194/bg-10-6851-2013.

Strous, M., Heijnen, J. J., Kuenen, J. G., & Jetten, M. S. M. (1998). The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Applied Microbiology and Biotechnology, 50(5), 589–96. doi: 10.1007/s002530051340.

Tikilili, P. V. (2016). Performance and modelling of non-granular anammox culture for wastewater treatment. Information Technology.

Van Duc, L., Song, B., Ito, H., Hama, T., Otani, M., & Kawagoshi, Y. (2018). High growth potential and nitrogen removal performance of marine anammox bacteria in shrimp-aquaculture sediment. Chemosphere, 196, 69–77. doi: 10.1016/j.chemosphere.2017.12.159.

Wang, T., Liu, R., O’Meara, K., Mullan, E., & Zhao, Y. (2018). Assessment of a field tidal flow constructed wetland in treatment of swine wastewater: life cycle approach. Water (Switzerland), 10(5), 10050573. doi: 10.3390/w10050573.

Zulkarnaini, Yujie, Q., Yamamoto-Ikemoto, R., & Matsuura, N. (2018). One-stage nitritation/anammox process using a biofilm reactor with two-inflow. Journal of Water and Environment Technology, 16(2), 106–14. doi: 10.2965/jwet.17-050.