Kajian Tekno-Ekonomi Penerapan Insinerator Waste-to-Energy di Indonesia (Kasus pada Kota “X") A Techno-Economic Study on the Application of Waste-to-Energy Incinerator in Indonesia (Case on City “X”)
Main Article Content
Abstract
In order to realize net zero emissions in waste sector, the government encourages the application of Waste-to-Energy (WtE) thermal process technology in 12 cities in Indonesia. There are many obstacles and challenges in implementing WtE as an alternative for waste management, starting from changes in consistency of regulations, environmental issues as well as technical and economic feasibility. Therefore, this study aims to examine the Techno-Economics of WtE Incinerator Implementation in Indonesia by taking the case in City "X" as an illustration for stakeholders in making decisions. The methods used include the desk study, direct observation, and interviews. In this study, City "X" becomes a model for the implementation of WtE with a waste processing capacity of 1,500 tpd which is a typical waste generation in big cities in Indonesia. City set a target to reduce 80–90% of waste volume. After technology selection stage, the MGI was selected as the main WtE unit. The plant is designed with a capacity of 1,500 tons/day of waste with a calorific value of 6,276 kJ/kg, 26% plant efficiency, 8,000 hours/year operation so that it will produce 28.33 MW of electricity or energy equivalent to 226,633 MWh/year. This electrical power will be used for internal purposes by 15% so that the total net electricity for the PLN grid is 24.08 MW. This WtE has a capital expenditure (Capex) of 2.2 billion IDR/ton/day and operational expenditure (Opex) 167 million IDR /year/ton per day with an estimated construction in 2025. The electricity price obtained from this capacity is 1,819 IDR/kWh. Based on the estimated value of the cost of capital, the selling price of electricity and the assumption that the loan will be returned for 10 years with interest rate of 6%, the WtE project gets a tipping fee of 642,779 IDR/ton of waste.
Keywords: Waste-to-energy, Municipal waste, Techno economy
ABSTRAK
Dalam mewujudkan net zero emission di sektor persampahan, pemerintah mendorong penerapan teknologi Waste-to-Energy (WtE) di 12 Kota. Banyak kendala dan tantangan dalam penerapan WtE, mulai dari konsistensi regulasi, isu lingkungan, hingga kelayakan teknis dan ekonomi. Oleh karena itu, penelitian ini bertujuan untuk mengkaji tekno-ekonomi penerapan insinerator WtE di Indonesia dengan mengambil kasus di Kota “X” sebagai gambaran bagi stakeholders untuk mengambil keputusan. Metode yang digunakan meliputi metode desk study, pengamatan langsung, dan wawancara. Dalam penelitian ini Kota “X” menjadi model penerapan WtE kapasitas 1.500 ton/hari yang merupakan tipikal kapasitas yang umum di kota di Indonesia. Kota “X” menetapkan target pengolahan sampah mereduksi 80–90% dari volume sampah. Setelah melalui seleksi teknologi maka dipilih Moving Grate Incinerator sebagai unit utama WtE. Plant dirancang berkapasitas 1.500 ton/hari sampah dengan nilai kalor 6.276 kJ/kg, efisiensi termal 26%, operasi 8.000 jam/tahun sehingga akan menghasilkan energi listrik 28,33 MW atau energi setara 226.633 MWh/tahun. Daya listrik ini akan digunakan keperluan internal sebesar 15% sehingga total listrik bersih untuk ke jaringan PLN sebanyak 24,08 MW. WtE ini memiliki Capex Rp2,2 miliar/ton/hari serta Opex Rp167 juta/tahun/ton per hari dengan perkiraan dibangun tahun 2025 dan harga listrik yang diperoleh adalah Rp1.819/kWh. Berdasarkan perkiraan besaran nilai biaya modal, harga penjualan listrik dan asumsi bahwa pinjaman akan dikembalikan selama 10 tahun dengan bunga bank sebesar 6%, maka proyek WtE ini mendapatkan nilai tipping fee sebesar Rp642.779/ton sampah.
Kata kunci: Waste-to-energy, Sampah perkotaan, Tekno ekonomi
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
JTL provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.
JTL by PTL-BPPT is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Permissions beyond the scope of this license may be available at http://ejurnal.bppt.go.id/index.php/JTL
References
Azmi, M. (2014). Analisis teknik dan ekonomi pemanfaatan biomassa sebagai pembangkit energi listrik di Surabaya (Doctoral dissertation, Institut Teknologi Sepuluh Nopember).
Azis, M. M., Kristanto, J., & Purnomo, C. W. (2021). A Techno-Economic Evaluation of Municipal Solid Waste (MSW) Conversion to Energy in Indonesia. Sustainability, 13(13), 7232.
Badan Pengkajian dan Penerapan Teknologi (BPPT). (2020). Operasional dan Pemeliharaan PLTSa Bantargebang Tahun 2020. Laporan Akhir untuk Dinas Lingkungan Hidup, Pemprov DKI Jakarta.
Bie, R., Chen, P., Song, X., & Ji, X. (2016). Characteristics of municipal solid waste incineration fly ash with cement solidification treatment. Journal of the Energy Institute, 89(4), 704–712.
Boundy, B., Diegel, S.W., Wright, L, & Davis, S.C. (2011). Biomass Energy Data Book: Edition 4, U.S Departement of Energy and Oak Ridge National Laboratory, Tennessee.
Buonanno, G., Ficco, G., & Stabile, L. (2009). Size distribution and number concentration of particles at the stack of a municipal waste incinerator. Waste Management, 29(2), 749–755.
Dioha, M., & Osei-Appiah, N.A. (2019). Techno-Economic Assessment of Waste-to-Energy Technologies in Ghana. J. of Sus. Energy. 10 (2).
Di Maria, Continia, S., Bidinia, G., Boncompagnic, A., Lasagnic, M., & Sisania, F. (2016). Energetic Efficiency of an existing Waste to Energy power plant.
European Commission (EU). (2000). A Study on the Economic Valuation of Environmental Externalities from Landfill Disposal and Incineration of Waste, Final Report, D.G Environment.
Graham, D., Harnevie, H., Rob van Beek, & Blank, F. (2012). Validated methods for flue gas flow rate calculation with reference to EN-12952-15. VGB Powertech, e.V Germany.
Gupta, S. & Mishra, R.S. (2015). Estimation of electrical energy generation from Waste to Energy using incineration technology, Int. J. of Adv. Res. and Innovation, 3 (4), 631–634.
Haghi, E., & Tehrani, F. B. (2015). Techno-economic assessment of municipal solid waste incineration plant-case study of Tehran, Iran. In First Sustain Dev Conf Eng Syst Energy Water Environ.
Jakpro & PwC Consultant. (2020). Pra Studi Kelayakan Penyelenggaraan Fasilitas Pengolahan Sampah Antara di dalam Kota DKI Jakarta Untuk Pemenuhan Peraturan Gubernur DKI Jakarta Nomor 65 Tahun 2019. Technical Report.
Jones, A. M., & Harrison, R. M. (2016). Emission of ultrafine particles from the incineration of municipal solid waste: A review. Atmospheric Environment, 140, 519–528.
Kementerian Lingkungan Hidup dan Kehutanan (KLHK). (2017). Strategi Implementasi NDC (Nationally Determined Contribution). Direktorat Jenderal Pengendalian Perubahan Iklim.
Kikkawa, H., Ishizaka, H., Kai, K., & Nakamoto, T. (2008). DeNOx, DeSOx, and CO2 removal technology for power plant. Hitachi Review. 57(5).
Leme, M. M. V., Rocha, M. H., Lora, E. E. S., Venturini, O. J., Lopes, B. M., & Ferreira, C. H. (2014). Techno-economic analysis and environmental impact assessment of energy recovery from Municipal Solid Waste (MSW) in Brazil. Resources, Conservation and Recycling, 87, 8–20.
Maisiri, W. (2016). A techno-economic evaluation of a waste-to-energy grate incineration power plant for a small South African city (Doctoral dissertation, North-West University (South Africa), Potchefstroom Campus).
Neuwahl, F., Cusano, G., Benavides, J. G., Holbrook, S., & Roudier, S. (2019). Best available techniques (BAT) reference document for waste incineration. Publications Office of the European Union: Luxembourg.
Niessen, W.R. (2002). Combustion and Incineration Process. Marcel Dekker, Inc. New York.
Nadiaratri, I. (2021). Studi keberlanjutan instalasi pengolahan sampah menjadi energi listrik (PSEL) (Studi Kasus: PSEL Bantargebang). Tugas Akhir. Jurusan Teknik Lingkungan. Institut Teknologi Bandung, Juli 2021
Oumarou, M. B., Abubakar, A. B., & Abubakar, S. (2018). Municipal Solid Waste Incinerator Design: Basic Principles. Sustainable Energy, 6(1), 11–19.
Prima, G. (2018). Studi Timbulan Sampah Dan Persepsi Masyarakat Dalam Pengelolaan Sampah Di Kecamatan Depok Dan Ngaglik Kabupaten Sleman Yogyakarta.
PT. Sumber Organik. (2019). Kajian Studi Kelayakan Pembangkit Listrik Tenaga Sampah (PLTSa) Gasifikasi di TPA Benowo Surabaya, Technical Report.
Purwanta, W., & Suryanto, F. (2018). Perancangan ID fan dan cerobong pada unit Pembangkit Listrik Tenaga Sampah (PLTSa). Jurnal Teknologi Lingkungan, 19(2).
Qiu, L. (2012). Analysis of The Economics of Waste-to-Energy Plants in China (I). Thesis ini Earth Resource Engineering. Department of Earth & Environmental Engineering. Columbia University.
Qodriyatun, S. N. (2021). Pembangkit listrik tenaga sampah: Antara permasalahan lingkungan dan percepatan pembangunan energi terbarukan. Aspirasi: Jurnal Masalah-Masalah Sosial, 12(1).
Quina, M. B. F. (2008). Treatment and use of air pollution control residues from Municipal Solid Waste incineration: An overview. Waste Management, 28, 2097–2121.
Reddy, P.J. (2016). Energy Recovery from Municipal Solid Waste by Thermal Conversion Technologies. CRC Press. Taylor & Francis Group.
Sitorus, G. (2020). Tantangan dan kendala dalam mewujudkan PSEL. Tata Kelola Sampah di Indonesia. Kumpulan Materi Webinar. Dana Mitra LIngkungan.
Tahar, N. (2022). Peningkatan kapasitas penanganan sampah nasional. Direktorat Penanganan Sampah. Ditjen PSLB3. Kementerian Lingkungan Hidup dan Kehutanan.
Widodo, S., & Firdaus, N. A. (2018). Studi Timbulan Dan Komposisi Sampah Rumah Tangga Kota Magelang. Jurnal Georafflesia, 3(2), 74–80.
World Bank. (1999). Technical Guidance Report, Municipal Solid Waste Incineration , Washington, D.C. 20433, U.S.A.
Young, G.C. (2010). Municipal Solid Waste to Energy Conversion Processes. John Wiley & Sons, Inc., New Jersey, Canada.
Zhang, G., Huang, X., Liao, W., Kang, S., Ren, M. & Hai, J. (2019). Measurement of Dioxin Emissions from a Small-Scale Waste Insinerator in the Absence of Air Pollution Controls. International Journal of Environmental Research and Public Healt. 16, 126.