NATURAL FREQUENCY ANALYSIS ON THE BASE STRUCTURE OF THE CNC MILLING MACHINE USING SIMULATION AND EXPERIMENTAL METHODS

Amar Makruf T.F., Veky. M. Fikry

1 National Research and Innovation Agency
Laboratory For Machine Tools, Production, and Automation Technology
E-mail : amar.makruf@bppt.go.id

ABSTRACT

The development of national machine tools needs special attention in order to compete with foreign products. Government agency cooperates with industry partners to develop precision CNC milling tools at competitive prices in today’s manufacturing industry. One of the problems that often occur in the machine structure is the vibration caused by the resonance between the components that make up the machine, which results in inaccurate machining products. Therefore, it is necessary to do a natural frequency analysis on the milling machine prototype. This research was conducted on the base structure which is the most basic component as a holder for other components. Natural frequency analysis on the base structure uses two methods, namely experimental and numerical simulation using FEA. The results of the two methods are then compared and analyzed for errors that occur. Research parameter so that design does not resonate is that rotational velocity should be 15% above or below the natural frequency. The results show comparison natural frequency error value of numerical simulation method with experimental method and analysis of safety base design against resonance.

Keywords: base structure; natural frequency; experimental; simulation

INTRODUCTION

Improving the quality and productivity of a product is currently a challenge for the manufacturing and machinery industry [1]. For this reason, it is necessary to develop machine tool designs that have low production costs and high machining precision [2]. One of the factors that affect the Machining precision level is the occurrence of vibration caused by rotation of motor or movements of other components that cause resonance. So that the designer needs to consider the optimal level of structural rigidity.

Machine tools play an important role in the manufacturing system. Too many vibrations will reduce the precision level of product dimensions and surface finish. Many losses occur due to vibration, such as reducing tool life, component joints loose, causing noise and production failure due to wear and cracking [3]. One of sources of this vibration comes from resonance due to its natural frequency similarity.

Every component of a machine or other tool has a certain natural frequency or is often interpreted as its favorite frequency whose value is influenced by mass and stiffness [4]. Likewise, the base structure of the milling machine used in this research has its own natural frequency.

The problem that is often faced in designing machine tool structures is the resonance that occurs at critical speed. Critical speed occurs when the natural frequency of the machine component is between the rotational frequency of the motor. This resonance will cause engine vibration increases [5].

Mathematically natural frequency can be determined by formula no-1:

\[fn = \frac{1}{2\pi} \sqrt{\frac{k}{m}} \]

(1)
Where fn is natural frequency of the base structure. k is stiffness of the base structure. m is the mass of base structure.

Stiffness is resistance of a material to elastic deformation. The value of material stiffness can be assessed from its modulus elasticity. The modulus of elasticity is the ratio between stress and strain. Finite element method (FEM) requires material properties such as modulus of elasticity of material used in the test object [6].

The aim of this study is to compare the natural frequency error between two methods, namely experimental and simulation. In addition, this study is also to ensure that the design of machine tools, especially the design of the base structure on the milling machine, is still safe from resonance at critical speed.

Figure 1 is prototype of milling machine. It is a result of research and development for the design machine tools which will be discussed in this journal.

![Figure 1. WAGE 645 CNC Milling.](image)

METHODS

The method used to complete this research include:

1. Numerical simulation using computational software. Simulation is an approximation method used to determine the value of the natural frequency component. The steps are

1.1. Literature Studies
Conducted a literature review in accordance with the research to understand the process of designing the base structure of the CNC milling machine and the properties of the materials used.

1.2. Designing using CAD (computer aided design)
Conceptual designs are made based on DR&O (Design Requirements and Objectives). Next step, we make embodiment design based on optimization design of conceptual designs using CAD software.

1.3. Numerical simulation
Simulations were carried out using FEA (Finite element analysis) software.

1.4. Discussion
Discussions with research team and all parties to analyze and find solutions to determine further steps.

2. The experimental method is called the bump test with the free play method, the steps that have been carried out are:

2.1. Discussion
Discussions with research team colleagues and various parties to analyze and find solutions to determine further steps.

2.2. Create test base layout
The base to be tested is a crane so that the base is free or free fly [7] to reduce damping.

2.3. Perform bump test
The test was carried out at 4 measurement points. Each point is tested 5 times.

2.4. Record test results
Test results is automatically saved in the internal memory.

2.5. Discussion
Discussions with research team and all parties to analyze and find solutions.

RESULTS AND DISCUSSION

Research Results
The simulation uses FEA software to determine natural frequency of the CAD design that has been made as shown in Figure 2. Figure 2 is the initial design based on the design concept.
Concept design is the result of DR&O development, such as problem definition, collecting information, concept creation and evaluation [8].

Figure 2. Milling Machine Base CAD Design.

The design of base structure using CAD is simulated by incorporating material properties of FC20. This material is widely used because of its ease in the manufacturing process, capable of mass production and competitive process costs, etc [9]. FC 20 material properties can be seen in table 1 below.

Table 1. Material properties of base structure [10].

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elastic Modulus</td>
<td>1</td>
<td>MPa</td>
</tr>
<tr>
<td>Thermal conduction coefficient (heat)</td>
<td>54</td>
<td>Watt/(m.Grade)</td>
</tr>
<tr>
<td>Density</td>
<td>7100</td>
<td>kg/m3</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>200</td>
<td>MPa</td>
</tr>
</tbody>
</table>

In this simulation, several assumptions will be made as boundary conditions to facilitate the calculation and analysis process, such as:
1. The model is simulated without providing a fixture function, so it is assumed free fly.
2. Modelling is simulated without providing external force loading function.

Numerical simulation of natural frequency using FEA software, it is necessary to determine the boundary conditions and the value of the material properties. In Figure 3-6, is the mode shape of the CNC milling machine base structure.

Table 2 is simulation results of the base structure. It will show the mode, frequency and deformation.
Table 2. Simulation results of the base structure.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Frequency (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode 1</td>
<td>430.27</td>
</tr>
<tr>
<td>Mode 2</td>
<td>466.10</td>
</tr>
<tr>
<td>Mode 3</td>
<td>481.49</td>
</tr>
<tr>
<td>Mode 4</td>
<td>524.34</td>
</tr>
</tbody>
</table>

Figure 7 is a Bump Test, the aim of Bump Test is to measure the natural frequency value of the base component of the CNC machine.

By knowing the natural frequency of each component, we want resonance problems can be identified and prevented early, by increasing stiffness or avoiding the rotational speed of the machine so that it is not close to the natural frequency of each component. According to the recommended rotational speed should be 15% above or below the natural frequency.

Figure 8 is the layout of the test base. The specimen is hung using an overhead crane as shown in the picture. There are 4 test points, each point is tested in X-axis direction or vertical direction.

Table 3. Frequency margin.

<table>
<thead>
<tr>
<th>RPM</th>
<th>Order</th>
<th>Frequency Margin -15%</th>
<th>Frequency (Hz)</th>
<th>Frequency Margin -15%</th>
</tr>
</thead>
<tbody>
<tr>
<td>6000</td>
<td>1x</td>
<td>85</td>
<td>100</td>
<td>115</td>
</tr>
<tr>
<td>12000</td>
<td>2x</td>
<td>170</td>
<td>200</td>
<td>230</td>
</tr>
<tr>
<td>18000</td>
<td>3x</td>
<td>255</td>
<td>300</td>
<td>345</td>
</tr>
<tr>
<td>24000</td>
<td>4x</td>
<td>340</td>
<td>400</td>
<td>460</td>
</tr>
<tr>
<td>30000</td>
<td>5x</td>
<td>425</td>
<td>500</td>
<td>575</td>
</tr>
</tbody>
</table>

The data from the bump test results can be seen in table 4. The test was carried out at 4 points according to Figure 8. The test was carried out 5 times so that 5 peak frequencies were obtained.

Table 4. Bump test results.

<table>
<thead>
<tr>
<th>Measuring point</th>
<th>Peak 1</th>
<th>Peak 2</th>
<th>Peak 3</th>
<th>Peak 4</th>
<th>Peak 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freq</td>
<td>Freq</td>
<td>Freq</td>
<td>Freq</td>
<td>Freq</td>
<td>Freq</td>
</tr>
<tr>
<td>Point 1</td>
<td>140</td>
<td>420</td>
<td>480</td>
<td>640</td>
<td>700</td>
</tr>
<tr>
<td>Point 2</td>
<td>110</td>
<td>410</td>
<td>480</td>
<td>640</td>
<td>700</td>
</tr>
<tr>
<td>Point 3</td>
<td>140</td>
<td>410</td>
<td>480</td>
<td>650</td>
<td>730</td>
</tr>
<tr>
<td>Point 4</td>
<td>140</td>
<td>410</td>
<td>480</td>
<td>540</td>
<td>730</td>
</tr>
</tbody>
</table>

Table 5 is the data obtained from the simulation and the test results are then compared and it can be seen the error which is the difference between the two methods. At point 4 the biggest error occurred, namely 12%. At point 3 the smallest error is 0.1%.

From the data that has been recorded, further analysis is carried out. This analysis will be a recommendation in the development of the base structure design of the next milling machine.
Table 5. Error Value Between Test And Simulation.

<table>
<thead>
<tr>
<th>Measuring point</th>
<th>Testing Average</th>
<th>Simulation</th>
<th>Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point 1</td>
<td>476</td>
<td>430.27</td>
<td>9.6%</td>
</tr>
<tr>
<td>Point 2</td>
<td>468</td>
<td>466.1</td>
<td>0.4%</td>
</tr>
<tr>
<td>Point 3</td>
<td>482</td>
<td>481.49</td>
<td>0.1%</td>
</tr>
<tr>
<td>Point 4</td>
<td>460</td>
<td>524.34</td>
<td>12%</td>
</tr>
</tbody>
</table>

From the results and discussion in the previous chapter, it can be concluded that the design of the base structure of the milling machine from the simulation and experiment/test results has an error which is the difference between the simulation and test results. This can occur due to interference when conducting direct testing or data collection. Interference can occur due to noise around the data collection area.

The analysis obtained from both methods can be used to determine whether the base structure design is still safe from critical speed resonance or not. From DR&D and motor specifications we can assume the CNC machine operates at a maximum speed of 6000 rpm. Table 3 shows the frequency margin for motor rotation. For a motor rotation of 6000 rpm the frequency is 100 Hz.

According to the recommended rotational velocity should be 15% above or below the natural frequency. For 6000 rpm motor rotation speed, it means that the frequency of other components will resonate if the natural frequency of other components is between 85 Hz-115 Hz.

CONCLUSION

From the test and simulation data, it can be concluded shall be the following. The minimum error value from the comparison of the two methods is 0.1% and a maximum is 12% due to interference when conducting direct testing and noise around the data collection area. The base structure design of the CNC milling machine is still safe from resonance because its natural frequency value is not within the critical speed frequency margin.

AUTHOR INFORMATION

Corresponding Authors
Email: amar.makruf@bppt.go.id.
Phone: +62 877 7753 7914
Email: veky.fikry@bppt.go.id

Author Contributions
First Author and Second Author have contributed equally to this work.

ACKNOWLEDGMENTS

During the writing of this journal, the author received a lot of help from various parties, either directly or indirectly. For that, with all humility, the author would like to express his deepest gratitude to all those who have helped, especially:

1. Mr. Juliansyah as Head of BTMEPPO.
2. CNC milling innovation program teammates.
3. All machine tool lab staff who have supported the writing of this journal.

REFERENCES

Frequencies and Mode Shapes for Free-free Beams”, Journal of Sound and Vibration.

